Mostrar el registro sencillo del ítem
dc.contributor.author | Besharat, Mohsen | es_ES |
dc.contributor.author | Coronado-Hernández, Oscar Enrique | es_ES |
dc.contributor.author | Fuertes-Miquel, Vicente S. | es_ES |
dc.contributor.author | Viseu, Maria Teresa | es_ES |
dc.contributor.author | Ramos, Helena M. | es_ES |
dc.date.accessioned | 2021-04-27T03:33:00Z | |
dc.date.available | 2021-04-27T03:33:00Z | |
dc.date.issued | 2019-08-06 | es_ES |
dc.identifier.issn | 0022-1686 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165607 | |
dc.description.abstract | [EN] The occurrence of sub-atmospheric pressure in the drainage of pipelines containing an air pocket has been known as a major cause of several serious problems. Accordingly, some system malfunction and pipe buckling events have been reported in the literature. This case has been studied experimentally and numerically in the current research considering objectives for a better understanding of: (i) the emptying process, (ii) the main parameters influencing the drainage, and (iii) the air-water interface deformation. Also, this research demonstrates the ability of a computational fluid dynamic (CFD) model in the simulation of this event. The effects of the air pocket size, the percentage and the time of valve opening on the pressure variation have been studied. Results show the pipeline drainage mostly occurs due to backflow air intrusion. The worst case scenario is associated with a fast valve opening when a tiny air pocket exists in the pipeline. | es_ES |
dc.description.sponsorship | This work is supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal [grant number PD/BD/114459/2016]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Hydraulic Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Computational fluid dynamics (CFD) | es_ES |
dc.subject | Emptying process | es_ES |
dc.subject | Entrapped air simulation | es_ES |
dc.subject | Experimental set-up | es_ES |
dc.subject | Realizable k-epsilon turbulence model | es_ES |
dc.subject | Sub-atmospheric pressure | es_ES |
dc.subject | Volume of fluid (VOF) multiphase model | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.title | Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00221686.2019.1625819 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//PD%2FBD%2F114459%2F2016/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Besharat, M.; Coronado-Hernández, OE.; Fuertes-Miquel, VS.; Viseu, MT.; Ramos, HM. (2019). Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. Journal of Hydraulic Research. 58(4):553-565. https://doi.org/10.1080/00221686.2019.1625819 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00221686.2019.1625819 | es_ES |
dc.description.upvformatpinicio | 553 | es_ES |
dc.description.upvformatpfin | 565 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\433387 | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.description.references | ANSYS FLUENT R19.0 academic [Computer software]. ANSYS, Canonsburg, PA. Retrieved from https://www.ansys.com/academic/free-student-products | es_ES |
dc.description.references | Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025 | es_ES |
dc.description.references | Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209-248. doi:10.1017/s0022112068000133 | es_ES |
dc.description.references | Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal, 15(8), 769-779. doi:10.1080/1573062x.2018.1540711 | es_ES |
dc.description.references | Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1 | es_ES |
dc.description.references | Besharat, M., Tarinejad, R., & Ramos, H. M. (2015). The effect of water hammer on a confined air pocket towards flow energy storage system. Journal of Water Supply: Research and Technology-Aqua, 65(2), 116-126. doi:10.2166/aqua.2015.081 | es_ES |
dc.description.references | Besharat, M., Teresa Viseu, M., & Ramos, H. (2017). Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events. Water, 9(1), 63. doi:10.3390/w9010063 | es_ES |
dc.description.references | Collins, R. P., Boxall, J. B., Karney, B. W., Brunone, B., & Meniconi, S. (2012). How severe can transients be after a sudden depressurization? Journal - American Water Works Association, 104(4), E243-E251. doi:10.5942/jawwa.2012.104.0055 | es_ES |
dc.description.references | Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098 | es_ES |
dc.description.references | Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578 | es_ES |
dc.description.references | Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2018). Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. Journal of Hydraulic Engineering, 144(4), 06018004. doi:10.1061/(asce)hy.1943-7900.0001446 | es_ES |
dc.description.references | Ding, H., Visser, F. C., Jiang, Y., & Furmanczyk, M. (2011). Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications. Journal of Fluids Engineering, 133(1). doi:10.1115/1.4003196 | es_ES |
dc.description.references | Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465 | es_ES |
dc.description.references | Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518 | es_ES |
dc.description.references | Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631 | es_ES |
dc.description.references | Liu, D., & Zhou, L. (2009). Numerical Simulation of Transient Flow in Pressurized Water Pipeline with Trapped Air Mass. 2009 Asia-Pacific Power and Energy Engineering Conference. doi:10.1109/appeec.2009.4918544 | es_ES |
dc.description.references | Martinoia, T., Barreto, C. V., da Rocha, J. C. D. C., Lavoura, J., & Henriques, F. M. P. (2012). Simulation and Planning of Pipeline Emptying Operations. Volume 1: Upstream Pipelines; Project Management; Design and Construction; Environment; Facilities Integrity Management; Operations and Maintenance; Pipeline Automation and Measurement. doi:10.1115/ipc2012-90432 | es_ES |
dc.description.references | Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046 | es_ES |
dc.description.references | Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508 | es_ES |
dc.description.references | Trindade, B. C., & Vasconcelos, J. G. (2013). Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions. Journal of Hydraulic Engineering, 139(9), 921-934. doi:10.1061/(asce)hy.1943-7900.0000757 | es_ES |
dc.description.references | Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984) | es_ES |
dc.description.references | Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647-656. doi:10.1080/00221686.2017.1300193 | es_ES |
dc.description.references | Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985 | es_ES |
dc.description.references | Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765 | es_ES |
dc.description.references | Zhou, L., Liu, D., & Karney, B. (2013). Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline. Journal of Hydraulic Engineering, 139(9), 949-959. doi:10.1061/(asce)hy.1943-7900.0000750 | es_ES |
dc.description.references | Zhou, L., Liu, D., Karney, B., & Zhang, Q. (2011). Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines. Journal of Hydraulic Engineering, 137(12), 1686-1692. doi:10.1061/(asce)hy.1943-7900.0000460 | es_ES |
dc.description.references | Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357 | es_ES |
dc.description.references | Zukoski, E. E. (1966). Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. Journal of Fluid Mechanics, 25(4), 821-837. doi:10.1017/s0022112066000442 | es_ES |