Mostrar el registro sencillo del ítem
dc.contributor.author | Salandin, Andrea | es_ES |
dc.contributor.author | Soler Fernández, David | es_ES |
dc.contributor.author | Bevivino, Michele | es_ES |
dc.date.accessioned | 2021-04-27T03:33:45Z | |
dc.date.available | 2021-04-27T03:33:45Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165614 | |
dc.description.abstract | [EN] Buildings account 40% of the EU's total energy consumption. Therefore, they represent a key potential source of energy savings to fight, among others, against climate change. Furthermore, around 54% of the buildings in Spain date back before 1980, when no thermal regulation was available. The refurbishment of a façade of an old building is usually the most effective way to improve its energy efficiency, by adding layers to the external envelope in order to reduce its thermal transmittance. This paper deals with the problem of minimizing costs for the thermal refurbishment of a façade with thickness and thermal ransmittance bounds and with an intervention both on the opaque part (wall) and the transparent part (windows). Among thousands, even millions of combinations of materials and thicknesses for the different layers to be added to the opaque part, types of frame, and combinations of glasses and air chambers for the transparent part, the aim is to choose the one that minimizes the cost without violating any restriction imposed to the thermal refurbishment, in particular the current energy efficiency regulations in the zone. To optimally solve this problem, it will be modelled as an Integer Linear Programming problem with binary variables. The case study will be Building 1B of the School for Building Engineering of the Polytechnic University of Valencia, Spain. It was built in the late 1960s and has had a very inefficient energy consumption record. The optimal solution will be found among more than 6 million feasible solutions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject | Façade | es_ES |
dc.subject | Mathematical programming | es_ES |
dc.subject | Operations research and management sciences | es_ES |
dc.subject | Refurbishment | es_ES |
dc.subject | Thermal transmittance | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An Integer Linear Programming approach to minimize the cost of the refurbishment of a façade to improve the energy efficiency of a building | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.6029 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Salandin, A.; Soler Fernández, D.; Bevivino, M. (2020). An Integer Linear Programming approach to minimize the cost of the refurbishment of a façade to improve the energy efficiency of a building. Mathematical Methods in the Applied Sciences. 43(14):8067-8088. https://doi.org/10.1002/mma.6029 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.6029 | es_ES |
dc.description.upvformatpinicio | 8067 | es_ES |
dc.description.upvformatpfin | 8088 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\410322 | es_ES |
dc.description.references | Nearly zero‐energy buildingshttps://ec.europa.eu/energy/en/topics/energy‐efficiency/buildings/nearly‐zero‐energy‐buildings(accessed 27.12.2018). | es_ES |
dc.description.references | Building stock characteristicshttps://ec.europa.eu/energy/en/eu‐buildings‐factsheets‐topics‐tree/building‐stock‐characteristics(accessed 27.12.2018). | es_ES |
dc.description.references | Boletín Especial Censo2011Parque edificatorio Publicaciones del Ministerio de Fomento http://www.fomento.gob.es/MFOM.CP.Web/handlers/pdfhandler.ashx?idpub=BAW021(accessed 27.12.2018). | es_ES |
dc.description.references | Boosting Building Renovation.What Potential and Value for Europe? Study for the ITRE Committee 2016http://www.europarl.europa.eu/RegData/etudes/STUD/2016/587326/IPOL_STU(2016)587326_EN.pdf(accessed 27.12.2018). | es_ES |
dc.description.references | Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance).https://eur‐lex.europa.eu/legal‐content/EN/TXT/?uri=celex:32018L0844(accessed 27.12.2018). | es_ES |
dc.description.references | How to Refurbish All Buildings by 2050 Final ReportJune 2012https://www.eui.eu/projects/think/documents/thinktopic/thinktopic72012.pdf(accessed 27.12.2018). | es_ES |
dc.description.references | 2020 climate & energy package.https://ec.europa.eu/clima/policies/strategies/2020_en(accessed 27.12.2018). | es_ES |
dc.description.references | 2030 climate & energy framework.https://ec.europa.eu/clima/policies/strategies/2030_en(accessed 27.12.2018). | es_ES |
dc.description.references | 2050 low‐carbon economyhttps://ec.europa.eu/clima/policies/strategies/2050_en(accessed 27.12.2018). | es_ES |
dc.description.references | Lidberg, T., Gustafsson, M., Myhren, J. A., Olofsson, T., & Ödlund (former Trygg), L. (2018). Environmental impact of energy refurbishment of buildings within different district heating systems. Applied Energy, 227, 231-238. doi:10.1016/j.apenergy.2017.07.022 | es_ES |
dc.description.references | Mickaitytė, A., Zavadskas, E. K., Kaklauskas, A., & Tupėnaitė, L. (2008). THE CONCEPT MODEL OF SUSTAINABLE BUILDINGS REFURBISHMENT. International Journal of Strategic Property Management, 12(1), 53-68. doi:10.3846/1648-715x.2008.12.53-68 | es_ES |
dc.description.references | Passer, A., Ouellet-Plamondon, C., Kenneally, P., John, V., & Habert, G. (2016). The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings, 124, 153-163. doi:10.1016/j.enbuild.2016.04.008 | es_ES |
dc.description.references | Energy efficiency in buildings.https://www.buildingtechnologies.siemens.com/bt/global/en/building‐knowledge/pages/energy‐efficiency.aspx(accessed 27.12.2018). | es_ES |
dc.description.references | Baglivo, C., & Congedo, P. M. (2015). Design method of high performance precast external walls for warm climate by multi-objective optimization analysis. Energy, 90, 1645-1661. doi:10.1016/j.energy.2015.06.132 | es_ES |
dc.description.references | Baglivo, C., Congedo, P. M., D’Agostino, D., & Zacà, I. (2015). Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate. Energy, 83, 560-575. doi:10.1016/j.energy.2015.02.062 | es_ES |
dc.description.references | Corgnati, S. P., Fabrizio, E., Filippi, M., & Monetti, V. (2013). Reference buildings for cost optimal analysis: Method of definition and application. Applied Energy, 102, 983-993. doi:10.1016/j.apenergy.2012.06.001 | es_ES |
dc.description.references | U‐values in Europe.https://www.eurima.org/u‐values‐in‐europe(accessed 27.12.2018). | es_ES |
dc.description.references | CTE.Código Técnico de la Edificación (Spanish Technical Building Act). Documento Básico de Ahorro de Energía (Basic Document for Energy Saving). Version of 2013 with comments of 2016.http://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DccHE.pdf(accessed 27.12.2018). | es_ES |
dc.description.references | Sherali, H. D., & Driscoll, P. J. (2000). Evolution and state-of-the-art in integer programming. Journal of Computational and Applied Mathematics, 124(1-2), 319-340. doi:10.1016/s0377-0427(00)00431-3 | es_ES |
dc.description.references | Kurnitski, J., Saari, A., Kalamees, T., Vuolle, M., Niemelä, J., & Tark, T. (2013). Cost optimal and nearly zero energy performance requirements for buildings in Estonia. Estonian Journal of Engineering, 19(3), 183. doi:10.3176/eng.2013.3.02 | es_ES |
dc.description.references | Congedo, P. M., Baglivo, C., D’Agostino, D., & Zacà, I. (2015). Cost-optimal design for nearly zero energy office buildings located in warm climates. Energy, 91, 967-982. doi:10.1016/j.energy.2015.08.078 | es_ES |
dc.description.references | Sambou, V., Lartigue, B., Monchoux, F., & Adj, M. (2009). Thermal optimization of multilayered walls using genetic algorithms. Energy and Buildings, 41(10), 1031-1036. doi:10.1016/j.enbuild.2009.05.007 | es_ES |
dc.description.references | Di Perna, C., Stazi, F., Casalena, A. U., & D’Orazio, M. (2011). Influence of the internal inertia of the building envelope on summertime comfort in buildings with high internal heat loads. Energy and Buildings, 43(1), 200-206. doi:10.1016/j.enbuild.2010.09.007 | es_ES |
dc.description.references | Privitera, G., Day, A. R., Dhesi, G., & Long, D. (2011). Optimising the installation costs of renewable energy technologies in buildings: A Linear Programming approach. Energy and Buildings, 43(4), 838-843. doi:10.1016/j.enbuild.2010.12.003 | es_ES |
dc.description.references | Ashouri, A., Fux, S. S., Benz, M. J., & Guzzella, L. (2013). Optimal design and operation of building services using mixed-integer linear programming techniques. Energy, 59, 365-376. doi:10.1016/j.energy.2013.06.053 | es_ES |
dc.description.references | Lindberg, K. B., Doorman, G., Fischer, D., Korpås, M., Ånestad, A., & Sartori, I. (2016). Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming. Energy and Buildings, 127, 194-205. doi:10.1016/j.enbuild.2016.05.039 | es_ES |
dc.description.references | Ogunjuyigbe, A. S. O., Ayodele, T. R., & Oladimeji, O. E. (2016). Management of loads in residential buildings installed with PV system under intermittent solar irradiation using mixed integer linear programming. Energy and Buildings, 130, 253-271. doi:10.1016/j.enbuild.2016.08.042 | es_ES |
dc.description.references | Soler, D., Salandin, A., & Micó, J. C. (2018). Lowest thermal transmittance of an external wall under budget, material and thickness restrictions: An integer linear programming approach. Energy and Buildings, 158, 222-233. doi:10.1016/j.enbuild.2017.09.078 | es_ES |
dc.description.references | Salandin, A., & Soler, D. (2018). Computing the minimum construction cost of a building’s external wall taking into account its energy efficiency. Journal of Computational and Applied Mathematics, 338, 199-211. doi:10.1016/j.cam.2018.02.003 | es_ES |
dc.description.references | Generador de Precios de Elementos de la Construcción CYPE Ingenieros S.A. España 2017http://www.generadordeprecios.info(accessed 27.12.2018). | es_ES |
dc.description.references | Wolfram Mathematica http://www.wolfram.com/mathematica(accessed 27.12.2018). | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |