- -

An Integer Linear Programming approach to minimize the cost of the refurbishment of a façade to improve the energy efficiency of a building

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Integer Linear Programming approach to minimize the cost of the refurbishment of a façade to improve the energy efficiency of a building

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salandin, Andrea es_ES
dc.contributor.author Soler Fernández, David es_ES
dc.contributor.author Bevivino, Michele es_ES
dc.date.accessioned 2021-04-27T03:33:45Z
dc.date.available 2021-04-27T03:33:45Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165614
dc.description.abstract [EN] Buildings account 40% of the EU's total energy consumption. Therefore, they represent a key potential source of energy savings to fight, among others, against climate change. Furthermore, around 54% of the buildings in Spain date back before 1980, when no thermal regulation was available. The refurbishment of a façade of an old building is usually the most effective way to improve its energy efficiency, by adding layers to the external envelope in order to reduce its thermal transmittance. This paper deals with the problem of minimizing costs for the thermal refurbishment of a façade with thickness and thermal ransmittance bounds and with an intervention both on the opaque part (wall) and the transparent part (windows). Among thousands, even millions of combinations of materials and thicknesses for the different layers to be added to the opaque part, types of frame, and combinations of glasses and air chambers for the transparent part, the aim is to choose the one that minimizes the cost without violating any restriction imposed to the thermal refurbishment, in particular the current energy efficiency regulations in the zone. To optimally solve this problem, it will be modelled as an Integer Linear Programming problem with binary variables. The case study will be Building 1B of the School for Building Engineering of the Polytechnic University of Valencia, Spain. It was built in the late 1960s and has had a very inefficient energy consumption record. The optimal solution will be found among more than 6 million feasible solutions. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Energy efficiency es_ES
dc.subject Façade es_ES
dc.subject Mathematical programming es_ES
dc.subject Operations research and management sciences es_ES
dc.subject Refurbishment es_ES
dc.subject Thermal transmittance es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title An Integer Linear Programming approach to minimize the cost of the refurbishment of a façade to improve the energy efficiency of a building es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.6029 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Salandin, A.; Soler Fernández, D.; Bevivino, M. (2020). An Integer Linear Programming approach to minimize the cost of the refurbishment of a façade to improve the energy efficiency of a building. Mathematical Methods in the Applied Sciences. 43(14):8067-8088. https://doi.org/10.1002/mma.6029 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.6029 es_ES
dc.description.upvformatpinicio 8067 es_ES
dc.description.upvformatpfin 8088 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\410322 es_ES
dc.description.references Nearly zero‐energy buildingshttps://ec.europa.eu/energy/en/topics/energy‐efficiency/buildings/nearly‐zero‐energy‐buildings(accessed 27.12.2018). es_ES
dc.description.references Building stock characteristicshttps://ec.europa.eu/energy/en/eu‐buildings‐factsheets‐topics‐tree/building‐stock‐characteristics(accessed 27.12.2018). es_ES
dc.description.references Boletín Especial Censo2011Parque edificatorio Publicaciones del Ministerio de Fomento http://www.fomento.gob.es/MFOM.CP.Web/handlers/pdfhandler.ashx?idpub=BAW021(accessed 27.12.2018). es_ES
dc.description.references Boosting Building Renovation.What Potential and Value for Europe? Study for the ITRE Committee 2016http://www.europarl.europa.eu/RegData/etudes/STUD/2016/587326/IPOL_STU(2016)587326_EN.pdf(accessed 27.12.2018). es_ES
dc.description.references Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance).https://eur‐lex.europa.eu/legal‐content/EN/TXT/?uri=celex:32018L0844(accessed 27.12.2018). es_ES
dc.description.references How to Refurbish All Buildings by 2050 Final ReportJune 2012https://www.eui.eu/projects/think/documents/thinktopic/thinktopic72012.pdf(accessed 27.12.2018). es_ES
dc.description.references 2020 climate & energy package.https://ec.europa.eu/clima/policies/strategies/2020_en(accessed 27.12.2018). es_ES
dc.description.references 2030 climate & energy framework.https://ec.europa.eu/clima/policies/strategies/2030_en(accessed 27.12.2018). es_ES
dc.description.references 2050 low‐carbon economyhttps://ec.europa.eu/clima/policies/strategies/2050_en(accessed 27.12.2018). es_ES
dc.description.references Lidberg, T., Gustafsson, M., Myhren, J. A., Olofsson, T., & Ödlund (former Trygg), L. (2018). Environmental impact of energy refurbishment of buildings within different district heating systems. Applied Energy, 227, 231-238. doi:10.1016/j.apenergy.2017.07.022 es_ES
dc.description.references Mickaitytė, A., Zavadskas, E. K., Kaklauskas, A., & Tupėnaitė, L. (2008). THE CONCEPT MODEL OF SUSTAINABLE BUILDINGS REFURBISHMENT. International Journal of Strategic Property Management, 12(1), 53-68. doi:10.3846/1648-715x.2008.12.53-68 es_ES
dc.description.references Passer, A., Ouellet-Plamondon, C., Kenneally, P., John, V., & Habert, G. (2016). The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings, 124, 153-163. doi:10.1016/j.enbuild.2016.04.008 es_ES
dc.description.references Energy efficiency in buildings.https://www.buildingtechnologies.siemens.com/bt/global/en/building‐knowledge/pages/energy‐efficiency.aspx(accessed 27.12.2018). es_ES
dc.description.references Baglivo, C., & Congedo, P. M. (2015). Design method of high performance precast external walls for warm climate by multi-objective optimization analysis. Energy, 90, 1645-1661. doi:10.1016/j.energy.2015.06.132 es_ES
dc.description.references Baglivo, C., Congedo, P. M., D’Agostino, D., & Zacà, I. (2015). Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate. Energy, 83, 560-575. doi:10.1016/j.energy.2015.02.062 es_ES
dc.description.references Corgnati, S. P., Fabrizio, E., Filippi, M., & Monetti, V. (2013). Reference buildings for cost optimal analysis: Method of definition and application. Applied Energy, 102, 983-993. doi:10.1016/j.apenergy.2012.06.001 es_ES
dc.description.references U‐values in Europe.https://www.eurima.org/u‐values‐in‐europe(accessed 27.12.2018). es_ES
dc.description.references CTE.Código Técnico de la Edificación (Spanish Technical Building Act). Documento Básico de Ahorro de Energía (Basic Document for Energy Saving). Version of 2013 with comments of 2016.http://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DccHE.pdf(accessed 27.12.2018). es_ES
dc.description.references Sherali, H. D., & Driscoll, P. J. (2000). Evolution and state-of-the-art in integer programming. Journal of Computational and Applied Mathematics, 124(1-2), 319-340. doi:10.1016/s0377-0427(00)00431-3 es_ES
dc.description.references Kurnitski, J., Saari, A., Kalamees, T., Vuolle, M., Niemelä, J., & Tark, T. (2013). Cost optimal and nearly zero energy performance requirements for buildings in Estonia. Estonian Journal of Engineering, 19(3), 183. doi:10.3176/eng.2013.3.02 es_ES
dc.description.references Congedo, P. M., Baglivo, C., D’Agostino, D., & Zacà, I. (2015). Cost-optimal design for nearly zero energy office buildings located in warm climates. Energy, 91, 967-982. doi:10.1016/j.energy.2015.08.078 es_ES
dc.description.references Sambou, V., Lartigue, B., Monchoux, F., & Adj, M. (2009). Thermal optimization of multilayered walls using genetic algorithms. Energy and Buildings, 41(10), 1031-1036. doi:10.1016/j.enbuild.2009.05.007 es_ES
dc.description.references Di Perna, C., Stazi, F., Casalena, A. U., & D’Orazio, M. (2011). Influence of the internal inertia of the building envelope on summertime comfort in buildings with high internal heat loads. Energy and Buildings, 43(1), 200-206. doi:10.1016/j.enbuild.2010.09.007 es_ES
dc.description.references Privitera, G., Day, A. R., Dhesi, G., & Long, D. (2011). Optimising the installation costs of renewable energy technologies in buildings: A Linear Programming approach. Energy and Buildings, 43(4), 838-843. doi:10.1016/j.enbuild.2010.12.003 es_ES
dc.description.references Ashouri, A., Fux, S. S., Benz, M. J., & Guzzella, L. (2013). Optimal design and operation of building services using mixed-integer linear programming techniques. Energy, 59, 365-376. doi:10.1016/j.energy.2013.06.053 es_ES
dc.description.references Lindberg, K. B., Doorman, G., Fischer, D., Korpås, M., Ånestad, A., & Sartori, I. (2016). Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming. Energy and Buildings, 127, 194-205. doi:10.1016/j.enbuild.2016.05.039 es_ES
dc.description.references Ogunjuyigbe, A. S. O., Ayodele, T. R., & Oladimeji, O. E. (2016). Management of loads in residential buildings installed with PV system under intermittent solar irradiation using mixed integer linear programming. Energy and Buildings, 130, 253-271. doi:10.1016/j.enbuild.2016.08.042 es_ES
dc.description.references Soler, D., Salandin, A., & Micó, J. C. (2018). Lowest thermal transmittance of an external wall under budget, material and thickness restrictions: An integer linear programming approach. Energy and Buildings, 158, 222-233. doi:10.1016/j.enbuild.2017.09.078 es_ES
dc.description.references Salandin, A., & Soler, D. (2018). Computing the minimum construction cost of a building’s external wall taking into account its energy efficiency. Journal of Computational and Applied Mathematics, 338, 199-211. doi:10.1016/j.cam.2018.02.003 es_ES
dc.description.references Generador de Precios de Elementos de la Construcción CYPE Ingenieros S.A. España 2017http://www.generadordeprecios.info(accessed 27.12.2018). es_ES
dc.description.references Wolfram Mathematica http://www.wolfram.com/mathematica(accessed 27.12.2018). es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem