Mostrar el registro sencillo del ítem
dc.contributor.author | Pallarés Rubio, Luis | es_ES |
dc.contributor.author | Pallarés Rubio, Francisco Javier | es_ES |
dc.contributor.author | Ramada, José R. | es_ES |
dc.contributor.author | Aguero Ramón Llin, Antonio | es_ES |
dc.contributor.author | Eatherton, Matthew R. | es_ES |
dc.date.accessioned | 2021-04-27T03:34:09Z | |
dc.date.available | 2021-04-27T03:34:09Z | |
dc.date.issued | 2020-02-15 | es_ES |
dc.identifier.issn | 0141-0296 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165615 | |
dc.description.abstract | [EN] Headed studs are key components of structures which facilitate composite behavior between steel and concrete elements. In steel building structures, reinforced concrete infill walls surrounded by a stiff steel frame is a common example of a composite structure used to resist horizontal loads such as those produced by earthquakes or wind. To this end, these types of concrete walls need to be anchored to the steel frame with headed studs which must withstand shear and tensile forces (AISC 360). To properly design headed stud anchors in concrete walls, it is first necessary to understand their behavior when subjected to monotonic shear forces considering edge conditions and reinforcing details that may influence the stud strength. Few tests have examined headed studs subjected to monotonic shear with typical boundary effects in reinforced infill walls, so a new experimental study on 17 specimens explores the behavior of headed studs exposed to monotonic shear loading with group effects. The experiments showed that the strength of studs installed in infill walls with edge conditions is well predicted (average error in prediction is smaller than 10%) by ACI 318, AISC 360 and EC-4. However, when group effects of anchors are included in the analysis of infill walls, only the ACI 318 is able to predict the behavior. | es_ES |
dc.description.sponsorship | The present study was funded by the Universitat Politecnica de Valencia (UPV) and the Spanish Ministry of Economy and Competitiveness through the Project BIA2015-70651-R. The authors would like to express their gratitude to Debra Westall for revising the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Anchors | es_ES |
dc.subject | Steel | es_ES |
dc.subject | Concrete | es_ES |
dc.subject | Monotonic load | es_ES |
dc.subject | Shear walls | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Monotonic shear strength of headed studs in reinforced infill walls | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engstruct.2019.110045 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-70651-R/ES/CERRAMIENTOS NO CONVENCIONALES PARA LA PROTECCION DE EDIFICACIONES E INFRAESTRUCTURAS CRITICAS: ATENUACION DE LOS EFECTOS DE ACCIONES SISMICAS Y EXPLOSIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Pallarés Rubio, L.; Pallarés Rubio, FJ.; Ramada, JR.; Aguero Ramón Llin, A.; Eatherton, MR. (2020). Monotonic shear strength of headed studs in reinforced infill walls. Engineering Structures. 205:1-18. https://doi.org/10.1016/j.engstruct.2019.110045 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engstruct.2019.110045 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 205 | es_ES |
dc.relation.pasarela | S\421623 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | ACI 318. Building code requirements for structural concrete (ACI 318) and commentary (ACI 318R). Farmington Hills. Michigan. 2008. | es_ES |
dc.description.references | AISC 360. Load and Resistance Factor Design Specification for Structural Steel Buildings. American Institute for Steel Construction. Chicago. Illinois; 2016. | es_ES |
dc.description.references | AWS. Structural welding code steel; 2004. | es_ES |
dc.description.references | Civjan, S. A., & Singh, P. (2003). Behavior of Shear Studs Subjected to Fully Reversed Cyclic Loading. Journal of Structural Engineering, 129(11), 1466-1474. doi:10.1061/(asce)0733-9445(2003)129:11(1466) | es_ES |
dc.description.references | Dall’Asta, A., Leoni, G., Morelli, F., Salvatore, W., & Zona, A. (2017). An innovative seismic-resistant steel frame with reinforced concrete infill walls. Engineering Structures, 141, 144-158. doi:10.1016/j.engstruct.2017.03.019 | es_ES |
dc.description.references | Eurocode 4. UNE - ENV 1994-1.1. Design of composite steel and concrete structures. Part 1-1: General. Common rules and rules for buildings. AENOR; 2004. | es_ES |
dc.description.references | Gattesco, N., & Giuriani, E. (1996). Experimental study on stud shear connectors subjected to cyclic loading. Journal of Constructional Steel Research, 38(1), 1-21. doi:10.1016/0143-974x(96)00007-7 | es_ES |
dc.description.references | Hawkins, N. M., & Mitchell, D. (1984). Seismic Response of Composite Shear Connections. Journal of Structural Engineering, 110(9), 2120-2136. doi:10.1061/(asce)0733-9445(1984)110:9(2120) | es_ES |
dc.description.references | Morelli, F., Mussini, N., & Salvatore, W. (2018). Influence of shear studs distribution on the mechanical behaviour of dissipative hybrid steel frames with r.c. infill walls. Bulletin of Earthquake Engineering, 17(2), 957-983. doi:10.1007/s10518-018-0475-9 | es_ES |
dc.description.references | Morelli, F., Caprili, S., & Salvatore, W. (2018). Dataset on the cyclic experimental behavior of Steel frames with Reinforced Concrete infill Walls. Data in Brief, 19, 2061-2070. doi:10.1016/j.dib.2018.06.111 | es_ES |
dc.description.references | Pallarés L, Hajjar JF. Headed Steel Stud Anchors in Composite Structures: Part I. Shear. Report No. NSEL-013. Newmark Structural Laboratory Report Series (ISSN 1940-9826); 2009. | es_ES |
dc.description.references | Pallarés, L., & Hajjar, J. F. (2010). Headed steel stud anchors in composite structures, Part I: Shear. Journal of Constructional Steel Research, 66(2), 198-212. doi:10.1016/j.jcsr.2009.08.009 | es_ES |
dc.description.references | Pavlović, M., Marković, Z., Veljković, M., & Buđevac, D. (2013). Bolted shear connectors vs. headed studs behaviour in push-out tests. Journal of Constructional Steel Research, 88, 134-149. doi:10.1016/j.jcsr.2013.05.003 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |