- -

Tungsten-niobium oxide bronzes: a bulk and surface structural study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tungsten-niobium oxide bronzes: a bulk and surface structural study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delgado-Muñoz, Daniel es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Trunschke, Annette es_ES
dc.contributor.author López Nieto, José Manuel es_ES
dc.date.accessioned 2021-04-28T03:32:14Z
dc.date.available 2021-04-28T03:32:14Z
dc.date.issued 2020-10-14 es_ES
dc.identifier.issn 1477-9226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165725
dc.description.abstract [EN] Materials from the WO3-Nb2O5 system, presenting bronze-type crystal structures, display outstanding functional properties for several applications as thermoelectric materials, lithium-ion battery electrodes, or catalysts. In this work, a series of W-Nb-O oxide bronzes have been synthesized by the hydrothermal method (with Nb/(W + Nb) ratios in the range of 0-1). A combination of bulk and surface characterisation techniques has been applied to get further insights into: (i) the effect of thermal treatments on as-prepared materials and (ii) the surface chemical nature of W-Nb-O oxide bronzes. Thermal treatments promote the following structural changes: (i) loss of emerging long-range order and (ii) the elimination of NH4+ and H2O species from the structural channels of the as-synthesized materials. It has been observed that W-Nb-O bronzes with Nb at% of ca. 50% are able to retain a long-range order after heat-treatments, which is attributed to the presence of a Cs-0.5[W2.5Nb2.5O14]-type structure. Increasing amounts of Nb 5T in the materials (i) promote a phase transition to pseudocrystalline phases ordered along the c-axis; (ii) stabilize surface W s. species (elucidated by XPS); and (iii) increase the proportion of surface Lewis acid sites (as determined by the FTIR of adsorbed CO). Results suggest that pseudocrystalline oxides (with a Nb at% >= 50%) are closely related to NbO2 pentagonal bipyramid-containing structures. The stabilisation of Lewis acid sites on these pseudocrystalline materials leads to a higher yield of heavy compounds, at the expense of acrolein formation, in the gas-phase dehydration of glycerol. es_ES
dc.description.sponsorship The authors would like to acknowledge the Ministerio de Ciencia, Innovacion y Universidades in Spain for the financial support (RTI2018-099668-B-C21 and SEV-2016-0683 projects), and the Electron Microscopy Service at Universitat Politecnica de Valencia for providing facilities and technical support. D. D. also thanks Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Tungsten-niobium oxide bronzes: a bulk and surface structural study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0dt02058c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2014-068669/ES/SVP-2014-068669/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Delgado-Muñoz, D.; Concepción Heydorn, P.; Trunschke, A.; López Nieto, JM. (2020). Tungsten-niobium oxide bronzes: a bulk and surface structural study. Dalton Transactions. 49(38):13282-13293. https://doi.org/10.1039/d0dt02058c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0dt02058c es_ES
dc.description.upvformatpinicio 13282 es_ES
dc.description.upvformatpfin 13293 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 38 es_ES
dc.identifier.pmid 32936179 es_ES
dc.relation.pasarela S\431394 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references D. J. M. Bevan and P.Hagenmuller , Non-Stoichiometric Compounds , Pergamon , 1973 es_ES
dc.description.references Quan, H., Gao, Y., & Wang, W. (2020). Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorganic Chemistry Frontiers, 7(4), 817-838. doi:10.1039/c9qi01516g es_ES
dc.description.references Wu, C.-M., Naseem, S., Chou, M.-H., Wang, J.-H., & Jian, Y.-Q. (2019). Recent Advances in Tungsten-Oxide-Based Materials and Their Applications. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00049 es_ES
dc.description.references P. G. Dickens and M. F.Pye , in Intercalation Chemistry , ed. M. S. Whittingham and A. J. Jacobson , Academic Press , 1982 , pp. 539–561 es_ES
dc.description.references Tilley, R. J. D. (1995). The crystal chemistry of the higher tungsten oxides. International Journal of Refractory Metals and Hard Materials, 13(1-3), 93-109. doi:10.1016/0263-4368(95)00004-6 es_ES
dc.description.references CHEETHAM, A. K., & VON DREELE, R. B. (1973). Cation Distributions in Niobium Oxide Block Structures. Nature Physical Science, 244(139), 139-140. doi:10.1038/physci244139a0 es_ES
dc.description.references Obayashi, H., & Anderson, J. S. (1976). Intermediate phases and pseudophases in the system WO3Nb2O5: Tetragonal tungsten bronze phases. Journal of Solid State Chemistry, 17(1-2), 79-89. doi:10.1016/0022-4596(76)90205-x es_ES
dc.description.references MAGNÉLI, A. (1950). Structure of β-Tungsten Oxide. Nature, 165(4192), 356-357. doi:10.1038/165356b0 es_ES
dc.description.references M. Greenblatt , in Physics and Chemistry of Low-Dimensional Inorganic Conductors , ed. C. Schlenker , J. Dumas , M. Greenblatt and S. van Smaalen , Springer US , Boston, MA , 1996 , vol. 2 , pp. 15–43 es_ES
dc.description.references Chen, J., Wang, H., Deng, J., Xu, C., & Wang, Y. (2018). Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. Journal of Materials Chemistry A, 6(19), 8986-8991. doi:10.1039/c8ta01323c es_ES
dc.description.references García-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465k es_ES
dc.description.references Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e es_ES
dc.description.references Murayama, T., Kuramata, N., Takatama, S., Nakatani, K., Izumi, S., Yi, X., & Ueda, W. (2012). Synthesis of porous and acidic complex metal oxide catalyst based on group 5 and 6 elements. Catalysis Today, 185(1), 224-229. doi:10.1016/j.cattod.2011.10.029 es_ES
dc.description.references Omata, K., Izumi, S., Murayama, T., & Ueda, W. (2013). Hydrothermal synthesis of W–Nb complex metal oxides and their application to catalytic dehydration of glycerol to acrolein. Catalysis Today, 201, 7-11. doi:10.1016/j.cattod.2012.06.004 es_ES
dc.description.references Thibodeau, T. J., Canney, A. S., DeSisto, W. J., Wheeler, M. C., Amar, F. G., & Frederick, B. G. (2010). Composition of tungsten oxide bronzes active for hydrodeoxygenation. Applied Catalysis A: General, 388(1-2), 86-95. doi:10.1016/j.apcata.2010.08.025 es_ES
dc.description.references M. J. Sienko , in Nonstoichiometric Compounds, Advances in Chemistry , ed. R. Ward , American Chemical Society , 1963 , vol. 39 , ch. 21, pp. 224–236 es_ES
dc.description.references Yang, C., Chen, J.-F., Zeng, X., Cheng, D., & Cao, D. (2014). Design of the Alkali-Metal-Doped WO3 as a Near-Infrared Shielding Material for Smart Window. Industrial & Engineering Chemistry Research, 53(46), 17981-17988. doi:10.1021/ie503284x es_ES
dc.description.references Migas, D. B., Shaposhnikov, V. L., Rodin, V. N., & Borisenko, V. E. (2010). Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. Journal of Applied Physics, 108(9), 093713. doi:10.1063/1.3505688 es_ES
dc.description.references Ostertag, W., & Collins, C. V. (1967). Electrical resistivity of cubic rare earth, thorium and uranium tungsten bronzes. Materials Research Bulletin, 2(2), 217-221. doi:10.1016/0025-5408(67)90060-8 es_ES
dc.description.references Ostertag, W. (1966). Rare Earth Tungsten Bronzes. Inorganic Chemistry, 5(5), 758-760. doi:10.1021/ic50039a014 es_ES
dc.description.references Von Rohr, F. O., Ryser, A., Ji, H., Stolze, K., Tao, J., Frick, J. J., … Cava, R. J. (2019). The h ‐Sb x WO 3+2 x Oxygen Excess Antimony Tungsten Bronze. Chemistry – A European Journal, 25(8), 2082-2088. doi:10.1002/chem.201805251 es_ES
dc.description.references Cerretti, G., Schrade, M., Song, X., Balke, B., Lu, H., Weidner, T., … Tremel, W. (2017). Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb8−xW9+xO47 (0 < x < 5). Journal of Materials Chemistry A, 5(20), 9768-9774. doi:10.1039/c7ta01121k es_ES
dc.description.references Griffith, K. J., Wiaderek, K. M., Cibin, G., Marbella, L. E., & Grey, C. P. (2018). Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature, 559(7715), 556-563. doi:10.1038/s41586-018-0347-0 es_ES
dc.description.references Okumura, K., Tomiyama, T., Shirakawa, S., Ishida, S., Sanada, T., Arao, M., & Niwa, M. (2011). Hydrothermal synthesis and catalysis of Nb2O5–WOxnanofiber crystal. J. Mater. Chem., 21(1), 229-235. doi:10.1039/c0jm02882g es_ES
dc.description.references Delgado, D., Fernández-Arroyo, A., Domine, M. E., García-González, E., & López Nieto, J. M. (2019). W–Nb–O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems. Catalysis Science & Technology, 9(12), 3126-3136. doi:10.1039/c9cy00367c es_ES
dc.description.references Saha, D., Jensen, K. M. Ø., Tyrsted, C., Bøjesen, E. D., Mamakhel, A. H., Dippel, A.-C., … Iversen, B. B. (2014). In Situ Total X-Ray Scattering Study of WO3Nanoparticle Formation under Hydrothermal Conditions. Angewandte Chemie International Edition, 53(14), 3667-3670. doi:10.1002/anie.201311254 es_ES
dc.description.references Juelsholt, M., Lindahl Christiansen, T., & Jensen, K. M. Ø. (2019). Mechanisms for Tungsten Oxide Nanoparticle Formation in Solvothermal Synthesis: From Polyoxometalates to Crystalline Materials. The Journal of Physical Chemistry C, 123(8), 5110-5119. doi:10.1021/acs.jpcc.8b12395 es_ES
dc.description.references Murayama, T., Kuramata, N., & Ueda, W. (2016). Hydrothermal synthesis of W–Ta–O complex metal oxides by assembling MO6 (M = W or Ta) octahedra and creation of solid acid. Journal of Catalysis, 339, 143-152. doi:10.1016/j.jcat.2016.04.007 es_ES
dc.description.references Murayama, T., Nakajima, K., Hirata, J., Omata, K., Hensen, E. J. M., & Ueda, W. (2017). Hydrothermal synthesis of a layered-type W–Ti–O mixed metal oxide and its solid acid activity. Catalysis Science & Technology, 7(1), 243-250. doi:10.1039/c6cy02198k es_ES
dc.description.references Delgado, D., Soriano, M. D., Solsona, B., Zamora, S., Agouram, S., Concepción, P., & López Nieto, J. M. (2019). Tungsten-titanium mixed oxide bronzes: Synthesis, characterization and catalytic behavior in methanol transformation. Applied Catalysis A: General, 582, 117092. doi:10.1016/j.apcata.2019.05.026 es_ES
dc.description.references Delgado, D., Chieregato, A., Soriano, M. D., Rodríguez-Aguado, E., Ruiz-Rodríguez, L., Rodríguez-Castellón, E., & López Nieto, J. M. (2018). Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol. European Journal of Inorganic Chemistry, 2018(10), 1204-1211. doi:10.1002/ejic.201800059 es_ES
dc.description.references Delgado, D., Fernández-Arroyo, A., Salvia, N. L., Domine, M. E., & Nieto, J. M. L. (2019). Reflux-synthesized bulk and diluted W-Nb-O mixed oxide bronzes for the valorization of short-chain oxygenates aqueous mixtures. Chinese Journal of Catalysis, 40(11), 1778-1787. doi:10.1016/s1872-2067(19)63419-4 es_ES
dc.description.references La Salvia, N., Delgado, D., Ruiz-Rodríguez, L., Nadji, L., Massó, A., & Nieto, J. M. L. (2017). V- and Nb-containing tungsten bronzes catalysts for the aerobic transformation of ethanol and glycerol. Bulk and supported materials. Catalysis Today, 296, 2-9. doi:10.1016/j.cattod.2017.04.009 es_ES
dc.description.references Choi, J., Moon, K., Kang, I., Kim, S., Yoo, P. J., Oh, K. W., & Park, J. (2015). Preparation of quaternary tungsten bronze nanoparticles by a thermal decomposition of ammonium metatungstate with oleylamine. Chemical Engineering Journal, 281, 236-242. doi:10.1016/j.cej.2015.06.101 es_ES
dc.description.references Nieto, J. M. L., Botella, P., Vázquez, M. I., & Dejoz, A. (2002). The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chem. Commun., (17), 1906-1907. doi:10.1039/b204037a es_ES
dc.description.references Sadakane, M., Yamagata, K., Kodato, K., Endo, K., Toriumi, K., Ozawa, Y., … Ueda, W. (2009). Synthesis of Orthorhombic Mo-V-Sb Oxide Species by Assembly of Pentagonal Mo6O21Polyoxometalate Building Blocks. Angewandte Chemie International Edition, 48(21), 3782-3786. doi:10.1002/anie.200805792 es_ES
dc.description.references Wagner, J. B., Timpe, O., Hamid, F. A., Trunschke, A., Wild, U., Su, D. S., … Schlögl, R. (2006). Surface texturing of Mo–V–Te–Nb–O x selective oxidation catalysts. Topics in Catalysis, 38(1-3), 51-58. doi:10.1007/s11244-006-0070-1 es_ES
dc.description.references Barthel, J., Weirich, T. E., Cox, G., Hibst, H., & Thust, A. (2010). Structure of Cs0.5[Nb2.5W2.5O14] analysed by focal-series reconstruction and crystallographic image processing. Acta Materialia, 58(10), 3764-3772. doi:10.1016/j.actamat.2010.03.016 es_ES
dc.description.references Soriano, M. D., García-González, E., Concepción, P., Rodella, C. B., & López Nieto, J. M. (2017). Self-Organized Transformation from Hexagonal to Orthorhombic Bronze of Cs–Nb–W–O Mixed Oxides Prepared Hydrothermally. Crystal Growth & Design, 17(12), 6320-6331. doi:10.1021/acs.cgd.7b00999 es_ES
dc.description.references Dickens, P. G., & Whittingham, M. S. (1968). The tungsten bronzes and related compounds. Quarterly Reviews, Chemical Society, 22(1), 30. doi:10.1039/qr9682200030 es_ES
dc.description.references MAGNÉLI, A. (1952). Tungsten Bronzes containing Six-membered Rings of WO6 Octahedra. Nature, 169(4306), 791-792. doi:10.1038/169791a0 es_ES
dc.description.references Szilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668x es_ES
dc.description.references Pinar, A. B., Márquez-Álvarez, C., Grande-Casas, M., & Pérez-Pariente, J. (2009). Template-controlled acidity and catalytic activity of ferrierite crystals. Journal of Catalysis, 263(2), 258-265. doi:10.1016/j.jcat.2009.02.017 es_ES
dc.description.references Gu, Z., Ma, Y., Zhai, T., Gao, B., Yang, W., & Yao, J. (2006). A Simple Hydrothermal Method for the Large-Scale Synthesis of Single-Crystal Potassium Tungsten Bronze Nanowires. Chemistry - A European Journal, 12(29), 7717-7723. doi:10.1002/chem.200600077 es_ES
dc.description.references Xie, F. Y., Gong, L., Liu, X., Tao, Y. T., Zhang, W. H., Chen, S. H., … Chen, J. (2012). XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. Journal of Electron Spectroscopy and Related Phenomena, 185(3-4), 112-118. doi:10.1016/j.elspec.2012.01.004 es_ES
dc.description.references Grundner, M., & Halbritter, J. (1980). XPS and AES studies on oxide growth and oxide coatings on niobium. Journal of Applied Physics, 51(1), 397-405. doi:10.1063/1.327386 es_ES
dc.description.references Kreissl, H. T., Li, M. M. J., Peng, Y.-K., Nakagawa, K., Hooper, T. J. N., Hanna, J. V., … Tsang, S. C. E. (2017). Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity. Journal of the American Chemical Society, 139(36), 12670-12680. doi:10.1021/jacs.7b06856 es_ES
dc.description.references BURSILL, L. A., & HYDE, B. G. (1972). Rotation Faults in Crystals. Nature Physical Science, 240(102), 122-124. doi:10.1038/physci240122a0 es_ES
dc.description.references Bursill, L. A., & Smith, D. J. (1984). Interaction of small and extended defects in nonstoichiometric oxides. Nature, 309(5966), 319-321. doi:10.1038/309319a0 es_ES
dc.description.references Migas, D. B., Shaposhnikov, V. L., & Borisenko, V. E. (2010). Tungsten oxides. II. The metallic nature of Magnéli phases. Journal of Applied Physics, 108(9), 093714. doi:10.1063/1.3505689 es_ES
dc.description.references Dupin, J.-C., Gonbeau, D., Vinatier, P., & Levasseur, A. (2000). Systematic XPS studies of metal oxides, hydroxides and peroxides. Physical Chemistry Chemical Physics, 2(6), 1319-1324. doi:10.1039/a908800h es_ES
dc.description.references Ciftyürek, E., Šmíd, B., Li, Z., Matolín, V., & Schierbaum, K. (2019). Spectroscopic Understanding of SnO2 and WO3 Metal Oxide Surfaces with Advanced Synchrotron Based; XPS-UPS and Near Ambient Pressure (NAP) XPS Surface Sensitive Techniques for Gas Sensor Applications under Operational Conditions. Sensors, 19(21), 4737. doi:10.3390/s19214737 es_ES
dc.description.references Pawlak, D. A., Ito, M., Oku, M., Shimamura, K., & Fukuda, T. (2001). Interpretation of XPS O (1s) in Mixed Oxides Proved on Mixed Perovskite Crystals. The Journal of Physical Chemistry B, 106(2), 504-507. doi:10.1021/jp012040a es_ES
dc.description.references A. Davydov , Molecular Spectroscopy of Oxide Catalyst Surfaces , John Wiley & Sons , Hoboken , 2003 , pp. 27–179 es_ES
dc.description.references Perra, D., Drenchev, N., Chakarova, K., Cutrufello, M. G., & Hadjiivanov, K. (2014). Remarkable acid strength of ammonium ions in zeolites: FTIR study of low-temperature CO adsorption on NH4FER. RSC Adv., 4(99), 56183-56187. doi:10.1039/c4ra12504e es_ES
dc.description.references Zecchina, A., Marchese, L., Bordiga, S., Pazè, C., & Gianotti, E. (1997). Vibrational Spectroscopy of NH4+ Ions in Zeolitic Materials:  An IR Study. The Journal of Physical Chemistry B, 101(48), 10128-10135. doi:10.1021/jp9717554 es_ES
dc.description.references Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., & Dumeignil, F. (2010). Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 12(12), 2079. doi:10.1039/c0gc00307g es_ES
dc.description.references Foo, G. S., Wei, D., Sholl, D. S., & Sievers, C. (2014). Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 4(9), 3180-3192. doi:10.1021/cs5006376 es_ES
dc.description.references Sung, K.-H., & Cheng, S. (2017). Effect of Nb doping in WO3/ZrO2 catalysts on gas phase dehydration of glycerol to form acrolein. RSC Advances, 7(66), 41880-41888. doi:10.1039/c7ra08154e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem