Mostrar el registro sencillo del ítem
dc.contributor.author | Carceller-Carceller, Jose Miguel | es_ES |
dc.contributor.author | Martínez Galán, Julián Paul | es_ES |
dc.contributor.author | Monti, Rubens | es_ES |
dc.contributor.author | Bassan, Juliana Cristina | es_ES |
dc.contributor.author | Filice, Marco | es_ES |
dc.contributor.author | Yu, Jihong | es_ES |
dc.contributor.author | Climent Olmedo, María José | es_ES |
dc.contributor.author | Iborra Chornet, Sara | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2021-04-28T03:32:19Z | |
dc.date.available | 2021-04-28T03:32:19Z | |
dc.date.issued | 2020-09-17 | es_ES |
dc.identifier.issn | 1867-3880 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165727 | |
dc.description | This is the peer reviewed version of the following article: J. M. Carceller, J. P. Martínez Galán, R. Monti, J. C. Bassan, M. Filice, J. Yu, M. J. Climent, S. Iborra, A. Corma, ChemCatChem 2020, 12, 4502, which has been published in final form at https://doi.org/10.1002/cctc.202000320. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] The crude naringinase from Penicillium decumbens and a purified naringinase with high a-L-rhamnosidase activity could be covalently immobilized on two-dimensional zeolite ITQ-2 after surface modification with glutaraldehyde. The influence of pH and temp. on the enzyme activity (in free and immobilized forms) as well as the thermal stability were detd. using the specific substrate: p-nitrophenyl-alpha-L-rhamnopyranoside (Rha-pNP). The crude and purified naringinase supported on ITQ-2 were applied in the hydrolysis of naringin, giving the flavonoids naringenin and prunin resp. with a conversion >90% and excellent selectivity. The supported enzymes showed long term stability, being possible to perform up to 25 consecutive cycles without loss of activity, showing its high potential to produce the valuable citrus flavonoids prunin and naringenin. We have also succeeded in the application of the immobilized crude naringinase on ITQ-2 for debittering grapefruit juices in a continuous process that was maintained operating for 300 h, with excellent results. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support from PGC2018-097277-B-100 (MCIU/AEI/FEDER,UE) project and Program Severo Ochoa (SEV-2016-0683). Jilin agreement 111 Project (Grant No. B17020). JMC thanks to Universitat Politecnica de Valencia for predoctoral fellowships. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Supported naringinase | es_ES |
dc.subject | ITQ-2 zeolite | es_ES |
dc.subject | Naringin | es_ES |
dc.subject | Prunin | es_ES |
dc.subject | Naringenin | es_ES |
dc.subject | Juice citrus debittering | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Covalent Immobilization of Naringinase over Two-Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cctc.202000320 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MOE//B17020/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Carceller-Carceller, JM.; Martínez Galán, JP.; Monti, R.; Bassan, JC.; Filice, M.; Yu, J.; Climent Olmedo, MJ.... (2020). Covalent Immobilization of Naringinase over Two-Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices. ChemCatChem. 12(18):4502-4511. https://doi.org/10.1002/cctc.202000320 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cctc.202000320 | es_ES |
dc.description.upvformatpinicio | 4502 | es_ES |
dc.description.upvformatpfin | 4511 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 18 | es_ES |
dc.relation.pasarela | S\433080 | es_ES |
dc.contributor.funder | Ministry of Education, China | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Puri, M., & Banerjee, U. C. (2000). Production, purification, and characterization of the debittering enzyme naringinase. Biotechnology Advances, 18(3), 207-217. doi:10.1016/s0734-9750(00)00034-3 | es_ES |
dc.description.references | Vila-Real, H., Alfaia, A. J., Rosa, M. E., Calado, A. R., & Ribeiro, M. H. L. (2010). An innovative sol–gel naringinase bioencapsulation process for glycosides hydrolysis. Process Biochemistry, 45(6), 841-850. doi:10.1016/j.procbio.2010.02.004 | es_ES |
dc.description.references | RoitNer, M., Schalkhammer, T., & Pittner, F. (1984). Preparation of prunin with the help of immobilized naringinase pretreated with alkaline buffer. Applied Biochemistry and Biotechnology, 9(5-6), 483-488. doi:10.1007/bf02798402 | es_ES |
dc.description.references | Ribeiro, I. A., Rocha, J., Sepodes, B., Mota-Filipe, H., & Ribeiro, M. H. (2008). Effect of naringin enzymatic hydrolysis towards naringenin on the anti-inflammatory activity of both compounds. Journal of Molecular Catalysis B: Enzymatic, 52-53, 13-18. doi:10.1016/j.molcatb.2007.10.011 | es_ES |
dc.description.references | Puri, M., Marwaha, S. S., Kothari, R. M., & Kennedy, J. F. (1996). Biochemical Basis of Bitterness in Citrus Fruit Juices and Biotech Approaches for Debittering. Critical Reviews in Biotechnology, 16(2), 145-155. doi:10.3109/07388559609147419 | es_ES |
dc.description.references | Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435-456. doi:10.1016/j.biotechadv.2015.03.006 | es_ES |
dc.description.references | Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Advanced Synthesis & Catalysis, 353(16), 2885-2904. doi:10.1002/adsc.201100534 | es_ES |
dc.description.references | ONO, M., TOSA, T., & CHIBATA, I. (1978). Preparation and properties of immobilized naringinase using tannin-aminohexyl cellulose. Agricultural and Biological Chemistry, 42(10), 1847-1853. doi:10.1271/bbb1961.42.1847 | es_ES |
dc.description.references | Tsen, H.-Y., & Tsai, S.-Y. (1988). Comparison of the kinetics and factors affecting the stabilities of chitin-immobilized naringinases from two fungal sources. Journal of Fermentation Technology, 66(2), 193-198. doi:10.1016/0385-6380(88)90047-7 | es_ES |
dc.description.references | SOARES, N. F. F., & HOTCHKISS, J. H. (1998). Naringinase Immobilization in Packaging Films for Reducing Naringin Concentration in Grapefruit Juice. Journal of Food Science, 63(1), 61-65. doi:10.1111/j.1365-2621.1998.tb15676.x | es_ES |
dc.description.references | Puri, M., Kaur, H., & Kennedy, J. F. (2005). Covalent immobilization of naringinase for the transformation of a flavonoid. Journal of Chemical Technology & Biotechnology, 80(10), 1160-1165. doi:10.1002/jctb.1303 | es_ES |
dc.description.references | Lei, S., Xu, Y., Fan, G., Xiao, M., & Pan, S. (2011). Immobilization of naringinase on mesoporous molecular sieve MCM-41 and its application to debittering of white grapefruit. Applied Surface Science, 257(9), 4096-4099. doi:10.1016/j.apsusc.2010.12.003 | es_ES |
dc.description.references | Luo, J., Li, Q., Sun, X., Tian, J., Fei, X., Shi, F., … Liu, X. (2019). The study of the characteristics and hydrolysis properties of naringinase immobilized by porous silica material. RSC Advances, 9(8), 4514-4520. doi:10.1039/c9ra00075e | es_ES |
dc.description.references | Nunes, M. A. P., Vila-Real, H., Fernandes, P. C. B., & Ribeiro, M. H. L. (2009). Immobilization of Naringinase in PVA–Alginate Matrix Using an Innovative Technique. Applied Biochemistry and Biotechnology, 160(7), 2129-2147. doi:10.1007/s12010-009-8733-6 | es_ES |
dc.description.references | Busto, M. D., Meza, V., Ortega, N., & Perez-Mateos, M. (2007). Immobilization of naringinase from Aspergillus niger CECT 2088 in poly(vinyl alcohol) cryogels for the debittering of juices. Food Chemistry, 104(3), 1177-1182. doi:10.1016/j.foodchem.2007.01.033 | es_ES |
dc.description.references | Huang, W., Zhan, Y., Shi, X., Chen, J., Deng, H., & Du, Y. (2017). Controllable immobilization of naringinase on electrospun cellulose acetate nanofibers and their application to juice debittering. International Journal of Biological Macromolecules, 98, 630-636. doi:10.1016/j.ijbiomac.2017.02.018 | es_ES |
dc.description.references | Gong, X., Xie, W., Wang, B., Gu, L., Wang, F., Ren, X., … Yang, L. (2017). Altered spontaneous calcium signaling of in situ chondrocytes in human osteoarthritic cartilage. Scientific Reports, 7(1). doi:10.1038/s41598-017-17172-w | es_ES |
dc.description.references | Carceller, J. M., Martínez Galán, J. P., Monti, R., Bassan, J. C., Filice, M., Iborra, S., … Corma, A. (2019). Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry, 21(4), 839-849. doi:10.1039/c8gc03661f | es_ES |
dc.description.references | Puri, M., Marwaha, S. S., & Kothari, R. M. (1996). Studies on the applicability of alginate-entrapped naringiase for the debittering of kinnow juice. Enzyme and Microbial Technology, 18(4), 281-285. doi:10.1016/0141-0229(95)00100-x | es_ES |
dc.description.references | Norouzian, D., Hosseinzadeh, A., Inanlou, D. N., & Moazami, N. (1999). World Journal of Microbiology and Biotechnology, 15(4), 501-502. doi:10.1023/a:1008980018481 | es_ES |
dc.description.references | Saallah, S., Naim, M. N., Lenggoro, I. W., Mokhtar, M. N., Abu Bakar, N. F., & Gen, M. (2016). Immobilisation of cyclodextrin glucanotransferase into polyvinyl alcohol (PVA) nanofibres via electrospinning. Biotechnology Reports, 10, 44-48. doi:10.1016/j.btre.2016.03.003 | es_ES |
dc.description.references | Cipolatti, E. P., Valério, A., Henriques, R. O., Moritz, D. E., Ninow, J. L., Freire, D. M. G., … de Oliveira, D. (2016). Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Advances, 6(106), 104675-104692. doi:10.1039/c6ra22047a | es_ES |
dc.description.references | Corma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:1<71::aid-adma71>3.0.co;2-w | es_ES |
dc.description.references | Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 | es_ES |
dc.description.references | Margarit, V. J., Díaz-Rey, M. R., Navarro, M. T., Martínez, C., & Corma, A. (2018). Direct Synthesis of Nano-Ferrierite along the 10-Ring-Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie, 130(13), 3517-3521. doi:10.1002/ange.201711418 | es_ES |
dc.description.references | Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv., 4(4), 1583-1600. doi:10.1039/c3ra45991h | es_ES |
dc.description.references | Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., … Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. doi:10.1016/0003-2697(85)90442-7 | es_ES |
dc.description.references | Marolewski, A. (1996). Fundamentals of Enzyme Kinetics. Revised Edition By Athel Cornish-Bowden. Portland Press, London. 1995. xiii + 343 pp. 17.5 cm × 24.5 cm. ISBN 1-85578-072-0. $29.00. Journal of Medicinal Chemistry, 39(4), 1010-1011. doi:10.1021/jm9508447 | es_ES |
dc.description.references | Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030 | es_ES |
dc.description.references | Cheong, M. W., Liu, S. Q., Zhou, W., Curran, P., & Yu, B. (2012). Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food Chemistry, 135(4), 2505-2513. doi:10.1016/j.foodchem.2012.07.012 | es_ES |
dc.description.references | Fox, D. W., Savage, W. L., & Wender, S. H. (1953). Hydrolysis of Some Flavonoid Rhamnoglucosides to Flavonoid Glucosides. Journal of the American Chemical Society, 75(10), 2504-2505. doi:10.1021/ja01106a507 | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Camblor, M. A., Corma, A., & Valencia, S. (1998). Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials, 25(1-3), 59-74. doi:10.1016/s1387-1811(98)00172-3 | es_ES |
dc.description.references | Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 | es_ES |