- -

Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity

Mostrar el registro completo del ítem

Toldrá Vilardell, F.; Gallego-Ibáñez, M.; Reig Riera, MM.; Aristoy Albert, MC.; Mora Soler, L. (2020). Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. Journal of Agricultural and Food Chemistry. 68(46):12842-12855. https://doi.org/10.1021/acs.jafc.9b08297

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165756

Ficheros en el ítem

Metadatos del ítem

Título: Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity
Autor: Toldrá Vilardell, Fidel Gallego-Ibáñez, Marta Reig Riera, Mª Milagro ARISTOY ALBERT, MARÍA CONCEPCIÓN Mora Soler, Leticia
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] There is a wide variety of peptides released from food proteins that are able to exert a relevant benefit for human health, such as angiotensin-converting enzyme inhibition, antioxidant, anti-inflammatory, hypoglucemic, ...[+]
Palabras clave: Proteolysis , Bioactive peptides , Proteomics , Mass spectrometry , Enzyme hydrolysis , Peptidases
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Agricultural and Food Chemistry. (issn: 0021-8561 )
DOI: 10.1021/acs.jafc.9b08297
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acs.jafc.9b08297
Título del congreso: American Chemical Society (ACS) Fall 2019 National Meeting & Exposition on Chemistry & Water
Lugar del congreso: San Diego, USA
Fecha congreso: Agosto 25-29,2019
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-89381-R/ES/SABOR DEL JAMON CURADO: GENERACION DE DI Y TRIPEPTIDOS DURANTE EL PROCESO, SU CONTRIBUCION AL SABOR Y POSIBLES EFECTOS DE SU OXIDACION/
Descripción: "This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jafc.9b08297"
Agradecimientos:
The research leading to these results received funding from Grant GL2017-89381-R from the Spanish Ministry of Economy, Industry and Competitivity and FEDER funds. Ramon y Cajal postdoctoral contract to Leticia Mora is also ...[+]
Tipo: Artículo Comunicación en congreso

References

Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55. doi:10.1016/j.peptides.2014.09.001

Mohanty, D. P., Mohapatra, S., Misra, S., & Sahu, P. S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences, 23(5), 577-583. doi:10.1016/j.sjbs.2015.06.005

Mora, L., Escudero, E., Arihara, K., & Toldrá, F. (2015). Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Research International, 78, 71-78. doi:10.1016/j.foodres.2015.11.005 [+]
Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55. doi:10.1016/j.peptides.2014.09.001

Mohanty, D. P., Mohapatra, S., Misra, S., & Sahu, P. S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences, 23(5), 577-583. doi:10.1016/j.sjbs.2015.06.005

Mora, L., Escudero, E., Arihara, K., & Toldrá, F. (2015). Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Research International, 78, 71-78. doi:10.1016/j.foodres.2015.11.005

Santiago-López, L., Aguilar-Toalá, J. E., Hernández-Mendoza, A., Vallejo-Cordoba, B., Liceaga, A. M., & González-Córdova, A. F. (2018). Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. Journal of Dairy Science, 101(5), 3742-3757. doi:10.3168/jds.2017-13465

Gallego, M., Mora, L., Escudero, E., & Toldrá, F. (2018). Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. International Journal of Food Microbiology, 276, 71-78. doi:10.1016/j.ijfoodmicro.2018.04.009

Jensen, I.-J., & Mæhre, H. (2016). Preclinical and Clinical Studies on Antioxidative, Antihypertensive and Cardioprotective Effect of Marine Proteins and Peptides—A Review. Marine Drugs, 14(11), 211. doi:10.3390/md14110211

Nongonierma, A. B., & FitzGerald, R. J. (2016). Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology, 50, 26-43. doi:10.1016/j.tifs.2016.01.022

Schlienger, J.-L., Paillard, F., Lecerf, J.-M., Romon, M., Bonhomme, C., Schmitt, B., … Bresson, J.-L. (2014). Effect on blood lipids of two daily servings of Camembert cheese. An intervention trial in mildly hypercholesterolemic subjects. International Journal of Food Sciences and Nutrition, 65(8), 1013-1018. doi:10.3109/09637486.2014.945156

Nilsen, R., Pripp, A. H., Høstmark, A. T., Haug, A., & Skeie, S. (2016). Effect of a cheese rich in angiotensin-converting enzyme-inhibiting peptides (Gamalost®) and a Gouda-type cheese on blood pressure: results of a randomised trial. Food & Nutrition Research, 60(1), 32017. doi:10.3402/fnr.v60.32017

Montoro-García, S., Zafrilla-Rentero, M. P., Celdrán-de Haro, F. M., Piñero-de Armas, J. J., Toldrá, F., Tejada-Portero, L., & Abellán-Alemán, J. (2017). Effects of dry-cured ham rich in bioactive peptides on cardiovascular health: A randomized controlled trial. Journal of Functional Foods, 38, 160-167. doi:10.1016/j.jff.2017.09.012

Martínez-Sánchez, S. M., Minguela, A., Prieto-Merino, D., Zafrilla-Rentero, M. P., Abellán-Alemán, J., & Montoro-García, S. (2017). The Effect of Regular Intake of Dry-Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte Activation Markers in Humans. Nutrients, 9(4), 321. doi:10.3390/nu9040321

Ryder, K., Bekhit, A. E.-D., McConnell, M., & Carne, A. (2016). Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases. Food Chemistry, 208, 42-50. doi:10.1016/j.foodchem.2016.03.121

Toldrá, F., Reig, M., Aristoy, M.-C., & Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395-404. doi:10.1016/j.foodchem.2017.06.119

Oseguera-Toledo, M. E., González de Mejía, E., Reynoso-Camacho, R., Cardador-Martínez, A., & Amaya-Llano, S. L. (2014). Proteins and bioactive peptides. Nutrafoods, 13(4), 147-157. doi:10.1007/s13749-014-0052-z

Lassoued, I., Mora, L., Nasri, R., Jridi, M., Toldrá, F., Aristoy, M.-C., … Nasri, M. (2015). Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. Journal of Functional Foods, 13, 225-238. doi:10.1016/j.jff.2014.12.042

Abdelhedi, O., Jridi, M., Jemil, I., Mora, L., Toldrá, F., Aristoy, M.-C., … Nasri, R. (2016). Combined biocatalytic conversion of smooth hound viscera: Protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and antibacterial activities. Food Research International, 86, 9-23. doi:10.1016/j.foodres.2016.05.013

Toldrá, F., Mora, L., & Reig, M. (2016). New insights into meat by-product utilization. Meat Science, 120, 54-59. doi:10.1016/j.meatsci.2016.04.021

Tanzadehpanah, H., Asoodeh, A., & Chamani, J. (2012). An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Research International, 49(1), 105-111. doi:10.1016/j.foodres.2012.08.022

Pepe, G., Sommella, E., Ventre, G., Scala, M. C., Adesso, S., Ostacolo, C., … Campiglia, P. (2016). Antioxidant peptides released from gastrointestinal digestion of «Stracchino» soft cheese: Characterization, in vitro intestinal protection and bioavailability. Journal of Functional Foods, 26, 494-505. doi:10.1016/j.jff.2016.08.021

Kamdem, J. P., & Tsopmo, A. (2017). Reactivity of peptides within the food matrix. Journal of Food Biochemistry, 43(1), e12489. doi:10.1111/jfbc.12489

Gallego, M., Mora, L., & Toldrá, F. (2018). Health relevance of antihypertensive peptides in foods. Current Opinion in Food Science, 19, 8-14. doi:10.1016/j.cofs.2017.12.004

Mora, L., Gallego, M., Reig, M., & Toldrá, F. (2017). Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends in Food Science & Technology, 69, 306-314. doi:10.1016/j.tifs.2017.04.011

Sentandreu, M. Á., & Toldrá, F. (2006). Oligopeptides hydrolysed by muscle dipeptidyl peptidases can generate angiotensin-I converting enzyme inhibitory dipeptides. European Food Research and Technology, 224(6), 785-790. doi:10.1007/s00217-006-0367-0

Mora, L., Escudero, E., Aristoy, M.-C., & Toldrá, F. (2015). A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages. International Journal of Food Microbiology, 212, 41-48. doi:10.1016/j.ijfoodmicro.2015.05.022

Mora, L., M, G., & F, T. (2019). Degradation of myosin heavy chain and its potential as a source of natural bioactive peptides in dry-cured ham. Food Bioscience, 30, 100416. doi:10.1016/j.fbio.2019.100416

Mora, L., Fraser, P. D., & Toldrá, F. (2013). Proteolysis follow-up in dry-cured meat products through proteomic approaches. Food Research International, 54(1), 1292-1297. doi:10.1016/j.foodres.2012.09.042

López, C. M., Bru, E., Vignolo, G. M., & Fadda, S. G. (2015). Identification of small peptides arising from hydrolysis of meat proteins in dry fermented sausages. Meat Science, 104, 20-29. doi:10.1016/j.meatsci.2015.01.013

Gallego, M., Grootaert, C., Mora, L., Aristoy, M. C., Van Camp, J., & Toldrá, F. (2016). Transepithelial transport of dry-cured ham peptides with ACE inhibitory activity through a Caco-2 cell monolayer. Journal of Functional Foods, 21, 388-395. doi:10.1016/j.jff.2015.11.046

Mora, L., Sentandreu, M. A., & Toldrá, F. (2011). Intense Degradation of Myosin Light Chain Isoforms in Spanish Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 59(8), 3884-3892. doi:10.1021/jf104070q

Mora, L., Gallego, M., Escudero, E., Reig, M., Aristoy, M.-C., & Toldrá, F. (2015). Small peptides hydrolysis in dry-cured meats. International Journal of Food Microbiology, 212, 9-15. doi:10.1016/j.ijfoodmicro.2015.04.018

Toldrá, F., Aristoy, M.-C., & Flores, M. (2000). Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Research International, 33(3-4), 181-185. doi:10.1016/s0963-9969(00)00032-6

Zhu, C.-Z., Zhang, W.-G., Zhou, G.-H., & Xu, X.-L. (2015). Identification of antioxidant peptides of Jinhua ham generated in the products and through the simulated gastrointestinal digestion system. Journal of the Science of Food and Agriculture, 96(1), 99-108. doi:10.1002/jsfa.7065

Xing, L., Hu, Y., Hu, H., Ge, Q., Zhou, G., & Zhang, W. (2016). Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chemistry, 194, 951-958. doi:10.1016/j.foodchem.2015.08.101

Dellafiora, L., Paolella, S., Dall’Asta, C., Dossena, A., Cozzini, P., & Galaverna, G. (2015). Hybrid in Silico/in Vitro Approach for the Identification of Angiotensin I Converting Enzyme Inhibitory Peptides from Parma Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 63(28), 6366-6375. doi:10.1021/acs.jafc.5b02303

Gallego, M., Mora, L., & Toldrá, F. (2018). Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chemistry, 258, 8-15. doi:10.1016/j.foodchem.2018.03.035

Gallego, M., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2014). Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham. Food Chemistry, 149, 121-128. doi:10.1016/j.foodchem.2013.10.076

Castellano, P., Mora, L., Escudero, E., Vignolo, G., Aznar, R., & Toldrá, F. (2016). Antilisterial peptides from Spanish dry-cured hams: Purification and identification. Food Microbiology, 59, 133-141. doi:10.1016/j.fm.2016.05.018

Gallego, M., Mora, L., & Toldrá, F. (2019). Potential cardioprotective peptides generated in Spanish dry-cured ham. Journal of Food Bioactives, 6. doi:10.31665/jfb.2019.6188

Gallego, M., Mora, L., Reig, M., & Toldrá, F. (2018). Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham. Food Research International, 105, 873-879. doi:10.1016/j.foodres.2017.12.006

Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., Arihara, K., & Toldrá, F. (2013). Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. Journal of Proteomics, 78, 499-507. doi:10.1016/j.jprot.2012.10.019

Wang, J., Lu, S., Li, R., Wang, Y., & Huang, L. (2019). Identification and characterization of antioxidant peptides from Chinese dry‐cured mutton ham. Journal of the Science of Food and Agriculture, 100(3), 1246-1255. doi:10.1002/jsfa.10136

Fialho, T. L., Carrijo, L. C., Magalhães Júnior, M. J., Baracat-Pereira, M. C., Piccoli, R. H., & de Abreu, L. R. (2018). Extraction and identification of antimicrobial peptides from the Canastra artisanal minas cheese. Food Research International, 107, 406-413. doi:10.1016/j.foodres.2018.02.009

Timón, M. L., Andrés, A. I., Otte, J., & Petrón, M. J. (2019). Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Research International, 120, 643-649. doi:10.1016/j.foodres.2018.11.019

Baptista, D. P., Galli, B. D., Cavalheiro, F. G., Negrão, F., Eberlin, M. N., & Gigante, M. L. (2018). Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. International Dairy Journal, 87, 75-83. doi:10.1016/j.idairyj.2018.08.001

Jin, Y., Yu, Y., Qi, Y., Wang, F., Yan, J., & Zou, H. (2016). Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion. Journal of Proteomics, 141, 24-46. doi:10.1016/j.jprot.2016.04.010

Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Antibacterial and antiproliferative peptides in synbiotic yogurt—Release and stability during refrigerated storage. Journal of Dairy Science, 99(6), 4233-4242. doi:10.3168/jds.2015-10499

Fekete, Á., Givens, D., & Lovegrove, J. (2015). Casein-Derived Lactotripeptides Reduce Systolic and Diastolic Blood Pressure in a Meta-Analysis of Randomised Clinical Trials. Nutrients, 7(1), 659-681. doi:10.3390/nu7010659

Chakrabarti, S., & Wu, J. (2015). Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Promote Adipocyte Differentiation and Inhibit Inflammation in 3T3-F442A Cells. PLOS ONE, 10(2), e0117492. doi:10.1371/journal.pone.0117492

Chakrabarti, S., Jahandideh, F., Davidge, S. T., & Wu, J. (2018). Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Enhance Insulin Sensitivity and Prevent Insulin Resistance in 3T3-F442A Preadipocytes. Journal of Agricultural and Food Chemistry, 66(39), 10179-10187. doi:10.1021/acs.jafc.8b02051

Li, Y., Sadiq, F. A., Liu, T., Chen, J., & He, G. (2015). Purification and identification of novel peptides with inhibitory effect against angiotensin I-converting enzyme and optimization of process conditions in milk fermented with the yeast Kluyveromyces marxianus. Journal of Functional Foods, 16, 278-288. doi:10.1016/j.jff.2015.04.043

Elkhtab, E., El-Alfy, M., Shenana, M., Mohamed, A., & Yousef, A. E. (2017). New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures. Journal of Dairy Science, 100(12), 9508-9520. doi:10.3168/jds.2017-13150

Najafian, L., & Babji, A. S. (2018). Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization, 12(3), 2174-2183. doi:10.1007/s11694-018-9833-1

Kleekayai, T., Saetae, D., Wattanachaiyingyong, O., Tachibana, S., Yasuda, M., & Suntornsuk, W. (2014). Characterization and in vitro biological activities of Thai traditional fermented shrimp pastes. Journal of Food Science and Technology, 52(3), 1839-1848. doi:10.1007/s13197-014-1528-y

Gallego, M., Aristoy, M.-C., & Toldrá, F. (2014). Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Science, 96(2), 757-761. doi:10.1016/j.meatsci.2013.09.014

Flores, M., & Toldrá, F. (2011). Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology, 22(2-3), 81-90. doi:10.1016/j.tifs.2010.09.007

Martinez-Villaluenga, C., Peñas, E., & Frias, J. (2017). Bioactive Peptides in Fermented Foods. Fermented Foods in Health and Disease Prevention, 23-47. doi:10.1016/b978-0-12-802309-9.00002-9

Santos, N. (2001). Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. International Journal of Food Microbiology, 68(3), 199-206. doi:10.1016/s0168-1605(01)00489-5

Matsushita-Morita, M., Tada, S., Suzuki, S., Hattori, R., Marui, J., Furukawa, I., … Kusumoto, K.-I. (2010). Overexpression and Characterization of an Extracellular Leucine Aminopeptidase from Aspergillus oryzae. Current Microbiology, 62(2), 557-564. doi:10.1007/s00284-010-9744-9

Stressler, T., Ewert, J., Merz, M., Funk, J., Claaßen, W., Lutz-Wahl, S., … Fischer, L. (2016). A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application. PLOS ONE, 11(3), e0152139. doi:10.1371/journal.pone.0152139

ZOTTA, T., RICCIARDI, A., & PARENTE, E. (2007). Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. International Journal of Food Microbiology, 115(2), 165-172. doi:10.1016/j.ijfoodmicro.2006.10.026

Herreros, M. ., Fresno, J. ., González Prieto, M. ., & Tornadijo, M. . (2003). Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). International Dairy Journal, 13(6), 469-479. doi:10.1016/s0958-6946(03)00054-2

Bintsis, T., Vafopoulou-Mastrojiannaki, A., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2003). Protease, peptidase and esterase activities by lactobacilli and yeast isolates from Feta cheese brine. Journal of Applied Microbiology, 95(1), 68-77. doi:10.1046/j.1365-2672.2003.01980.x

Macedo, A. C., Vieira, M., Poças, R., & Malcata, F. X. (2000). Peptide hydrolase system of lactic acid bacteria isolated from Serra da Estrela cheese. International Dairy Journal, 10(11), 769-774. doi:10.1016/s0958-6946(00)00111-4

González, L., Sacristán, N., Arenas, R., Fresno, J. M., & Eugenia Tornadijo, M. (2010). Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiology, 27(5), 592-597. doi:10.1016/j.fm.2010.01.004

TOLDRÁ, F., CERVERÓ, M.-C., & PART, C. (1993). Porcine Aminopeptidase Activity as Affected by Curing Agents. Journal of Food Science, 58(4), 724-726. doi:10.1111/j.1365-2621.1993.tb09344.x

Stressler, T., Eisele, T., Schlayer, M., Lutz-Wahl, S., & Fischer, L. (2013). Characterization of the Recombinant Exopeptidases PepX and PepN from Lactobacillus helveticus ATCC 12046 Important for Food Protein Hydrolysis. PLoS ONE, 8(7), e70055. doi:10.1371/journal.pone.0070055

Rul, F., Gripon, J.-C., & Monnet, V. (1995). St-PepA, a Streptococcus thermophilus aminopeptidase with high specificity for acidic residues. Microbiology, 141(9), 2281-2287. doi:10.1099/13500872-141-9-2281

Chapot-Chartier, M.-P., Rul, F., Nardi, M., & Gripon, J.-C. (1994). Gene Cloning and Characterization of PepC, a Cysteine Aminopeptidase from Streptococcus thermophilus, with sequence Similarity to the Eucaryotic Bleomycin Hydrolase. European Journal of Biochemistry, 224(2), 497-506. doi:10.1111/j.1432-1033.1994.00497.x

Stressler, T., Eisele, T., Schlayer, M., & Fischer, L. (2012). Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481. AMB Express, 2(1). doi:10.1186/2191-0855-2-39

Stressler, T., Eisele, T., Kranz, B., & Fischer, L. (2014). PepX from Lactobacillus helveticus: Automated multi-step purification and determination of kinetic parameters with original tripeptide substrates. Journal of Molecular Catalysis B: Enzymatic, 108, 103-110. doi:10.1016/j.molcatb.2014.07.006

Sinz, Q., & Schwab, W. (2012). Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei. Food Microbiology, 29(2), 215-223. doi:10.1016/j.fm.2011.07.007

Chavagnat, F., Meyer, J., & Casey, M. G. (2000). Purification, characterisation, cloning and sequencing of the gene encoding oligopeptidase PepO fromStreptococcus thermophilusA. FEMS Microbiology Letters, 191(1), 79-85. doi:10.1111/j.1574-6968.2000.tb09322.x

Rodríguez-Serrano, G. M., Garcia-Garibay, J. M., Cruz-Guerrero, A. E., Gomez-Ruiz, L. del C., Ayala-Nino, A., Castaneda-Ovando, A., & Gonzalez-Olivares, L. G. (2018). Proteolytic System of Streptococcus thermophilus. Journal of Microbiology and Biotechnology, 28(10), 1581-1588. doi:10.4014/jmb.1807.07017

Juille, O., Bars, D. L., & Juillard, V. (2005). The specificity of oligopeptide transport by Streptococcus thermophilus resembles that of Lactococcus lactis and not that of pathogenic streptococci. Microbiology, 151(6), 1987-1994. doi:10.1099/mic.0.27730-0

Skrzypczak, K., Gustaw, W., Szwajgier, D., Fornal, E., & Waśko, A. (2017). κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology, 54(11), 3679-3688. doi:10.1007/s13197-017-2830-2

Chang, O. K., Roux, É., Awussi, A. A., Miclo, L., Jardin, J., Jameh, N., … Perrin, C. (2014). Use of a free form of the Streptococcus thermophilus cell envelope protease PrtS as a tool to produce bioactive peptides. International Dairy Journal, 38(2), 104-115. doi:10.1016/j.idairyj.2014.01.008

Ha, G. E., Chang, O. K., Jo, S.-M., Han, G.-S., Park, B.-Y., Ham, J.-S., & Jeong, S.-G. (2015). Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563. Korean Journal for Food Science of Animal Resources, 35(6), 738-747. doi:10.5851/kosfa.2015.35.6.738

Pescuma, M., Espeche Turbay, M. B., Mozzi, F., Font de Valdez, G., Savoy de Giori, G., & Hebert, E. M. (2013). Diversity in proteinase specificity of thermophilic lactobacilli as revealed by hydrolysis of dairy and vegetable proteins. Applied Microbiology and Biotechnology, 97(17), 7831-7844. doi:10.1007/s00253-013-5037-0

Ali, E., Nielsen, S. D., Abd-El Aal, S., El-Leboudy, A., Saleh, E., & LaPointe, G. (2019). Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Frontiers in Nutrition, 6. doi:10.3389/fnut.2019.00152

Mauriello, G., Casaburi, A., Blaiotta, G., & Villani, F. (2004). Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science, 67(1), 149-158. doi:10.1016/j.meatsci.2003.10.003

Chaves-López, C., Serio, A., Paparella, A., Martuscelli, M., Corsetti, A., Tofalo, R., & Suzzi, G. (2014). Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiology, 42, 117-121. doi:10.1016/j.fm.2014.03.005

Dos Santos Aguilar, J. G., & Sato, H. H. (2018). Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103, 253-262. doi:10.1016/j.foodres.2017.10.044

Merz, M., Eisele, T., Berends, P., Appel, D., Rabe, S., Blank, I., … Fischer, L. (2015). Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes. Journal of Agricultural and Food Chemistry, 63(23), 5682-5693. doi:10.1021/acs.jafc.5b01665

Kitchener, R. L., & Grunden, A. M. (2012). Prolidase function in proline metabolism and its medical and biotechnological applications. Journal of Applied Microbiology, 113(2), 233-247. doi:10.1111/j.1365-2672.2012.05310.x

Harnedy, P. A., O’Keeffe, M. B., & FitzGerald, R. J. (2017). Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate. Food Research International, 100, 416-422. doi:10.1016/j.foodres.2017.07.037

Admassu, H., Gasmalla, M. A. A., Yang, R., & Zhao, W. (2018). Identification of Bioactive Peptides with α-Amylase Inhibitory Potential from Enzymatic Protein Hydrolysates of Red Seaweed (Porphyra spp). Journal of Agricultural and Food Chemistry, 66(19), 4872-4882. doi:10.1021/acs.jafc.8b00960

Neves, A. C., Harnedy, P. A., O’Keeffe, M. B., & FitzGerald, R. J. (2017). Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chemistry, 218, 396-405. doi:10.1016/j.foodchem.2016.09.053

Balti, R., Bougatef, A., Sila, A., Guillochon, D., Dhulster, P., & Nedjar-Arroume, N. (2015). Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chemistry, 170, 519-525. doi:10.1016/j.foodchem.2013.03.091

Salampessy, J., Reddy, N., Phillips, M., & Kailasapathy, K. (2017). Isolation and characterization of nutraceutically potential ACE-Inhibitory peptides from leatherjacket (Meuchenia sp.) protein hydrolysates. LWT, 80, 430-436. doi:10.1016/j.lwt.2017.03.004

Jemil, I., Mora, L., Nasri, R., Abdelhedi, O., Aristoy, M.-C., Hajji, M., … Toldrá, F. (2016). A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Research International, 89, 347-358. doi:10.1016/j.foodres.2016.08.020

Yu, W., Field, C. J., & Wu, J. (2018). Purification and identification of anti-inflammatory peptides from spent hen muscle proteins hydrolysate. Food Chemistry, 253, 101-107. doi:10.1016/j.foodchem.2018.01.093

Wang, L.-S., Huang, J.-C., Chen, Y.-L., Huang, M., & Zhou, G.-H. (2015). Identification and Characterization of Antioxidant Peptides from Enzymatic Hydrolysates of Duck Meat. Journal of Agricultural and Food Chemistry, 63(13), 3437-3444. doi:10.1021/jf506120w

Mirdhayati, I., Hermanianto, J., Wijaya, C. H., Sajuthi, D., & Arihara, K. (2016). Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus ). Journal of the Science of Food and Agriculture, 96(10), 3536-3542. doi:10.1002/jsfa.7538

Choe, J., Seol, K.-H., Son, D.-I., Lee, H. J., Lee, M., & Jo, C. (2019). Identification of angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of pork loin. International Journal of Food Properties, 22(1), 1112-1121. doi:10.1080/10942912.2019.1629690

Zhang, Y., Chen, R., Ma, H., & Chen, S. (2015). Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC–MS/MS. Journal of Agricultural and Food Chemistry, 63(40), 8819-8828. doi:10.1021/acs.jafc.5b03062

Bezerra, T. K. A., de Lacerda, J. T. J. G., Salu, B. R., Oliva, M. L. V., Juliano, M. A., Pacheco, M. T. B., & Madruga, M. S. (2019). Identification of Angiotensin I-Converting Enzyme-Inhibitory and Anticoagulant Peptides from Enzymatic Hydrolysates of Chicken Combs and Wattles. Journal of Medicinal Food, 22(12), 1294-1300. doi:10.1089/jmf.2019.0066

Slizyte, R., Rommi, K., Mozuraityte, R., Eck, P., Five, K., & Rustad, T. (2016). Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnology Reports, 11, 99-109. doi:10.1016/j.btre.2016.08.003

Mora, L., Gallego, M., & Toldrá, F. (2018). ACEI-Inhibitory Peptides Naturally Generated in Meat and Meat Products and Their Health Relevance. Nutrients, 10(9), 1259. doi:10.3390/nu10091259

Mora, L., Gallego, M., & Toldrá, F. (2018). New approaches based on comparative proteomics for the assessment of food quality. Current Opinion in Food Science, 22, 22-27. doi:10.1016/j.cofs.2018.01.005

Iwaniak, A., Darewicz, M., Mogut, D., & Minkiewicz, P. (2019). Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 61, 103486. doi:10.1016/j.jff.2019.103486

Zhang, Y., Aryee, A. N., & Simpson, B. K. (2020). Current role of in silico approaches for food enzymes. Current Opinion in Food Science, 31, 63-70. doi:10.1016/j.cofs.2019.11.003

Şanlier, N., Gökcen, B. B., & Sezgin, A. C. (2017). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506-527. doi:10.1080/10408398.2017.1383355

Vermeirssen, V., Augustijns, P., Morel, N., Van Camp, J., Opsomer, A., & Verstraete, W. (2005). In vitrointestinal transport and antihypertensive activity of ACE inhibitory pea and whey digests. International Journal of Food Sciences and Nutrition, 56(6), 415-430. doi:10.1080/09637480500407461

Tu, M., Cheng, S., Lu, W., & Du, M. (2018). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry, 105, 7-17. doi:10.1016/j.trac.2018.04.005

Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., & Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6, 384-394. doi:10.1016/j.jff.2013.11.005

Hernández-Ledesma, B., del Mar Contreras, M., & Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science, 165(1), 23-35. doi:10.1016/j.cis.2010.11.001

Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 3(4), 229-254. doi:10.1016/j.jff.2011.05.006

Zou, T.-B., He, T.-P., Li, H.-B., Tang, H.-W., & Xia, E.-Q. (2016). The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules, 21(1), 72. doi:10.3390/molecules21010072

Nwachukwu, I. D., & Aluko, R. E. (2019). Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry, 43(1), e12761. doi:10.1111/jfbc.12761

Lorenzo, J. M., Munekata, P. E. S., Gómez, B., Barba, F. J., Mora, L., Pérez-Santaescolástica, C., & Toldrá, F. (2018). Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science & Technology, 79, 136-147. doi:10.1016/j.tifs.2018.07.003

Ghribi, A. M., Sila, A., Przybylski, R., Nedjar-Arroume, N., Makhlouf, I., Blecker, C., … Besbes, S. (2015). Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. Journal of Functional Foods, 12, 516-525. doi:10.1016/j.jff.2014.12.011

Park, E. Y., Nakamura, Y., Sato, K., & Matsumura, Y. (2011). Effects of Amino Acids and Peptide on Lipid Oxidation in Emulsion Systems. Journal of the American Oil Chemists’ Society, 89(3), 477-484. doi:10.1007/s11746-011-1940-7

Manhiani, P. S., Northcutt, J. K., Han, I., Bridges, W. C., & Dawson, P. L. (2013). Antioxidant activity of carnosine extracted from various poultry tissues. Poultry Science, 92(2), 444-453. doi:10.3382/ps.2012-02480

Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2-3), 1282-1288. doi:10.1016/j.foodchem.2012.10.133

Kumar, M. S. (2019). Peptides and Peptidomimetics as Potential Antiobesity Agents: Overview of Current Status. Frontiers in Nutrition, 6. doi:10.3389/fnut.2019.00011

Yan, J., Zhao, J., Yang, R., & Zhao, W. (2019). Bioactive peptides with antidiabetic properties: a review. International Journal of Food Science & Technology, 54(6), 1909-1919. doi:10.1111/ijfs.14090

Mora, L., González-Rogel, D., Heres, A., & Toldrá, F. (2020). Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides. Journal of Functional Foods, 67, 103840. doi:10.1016/j.jff.2020.103840

Mudgil, P., Kamal, H., Yuen, G. C., & Maqsood, S. (2018). Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chemistry, 259, 46-54. doi:10.1016/j.foodchem.2018.03.082

Ayoub, M. A., Palakkott, A. R., Ashraf, A., & Iratni, R. (2018). The molecular basis of the anti-diabetic properties of camel milk. Diabetes Research and Clinical Practice, 146, 305-312. doi:10.1016/j.diabres.2018.11.006

Siow, H.-L., & Gan, C.-Y. (2016). Extraction, identification, and structure–activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). Journal of Functional Foods, 22, 1-12. doi:10.1016/j.jff.2016.01.011

Tabas, I., & Glass, C. K. (2013). Anti-Inflammatory Therapy in Chronic Disease: Challenges and Opportunities. Science, 339(6116), 166-172. doi:10.1126/science.1230720

Chakrabarti, S., Jahandideh, F., & Wu, J. (2014). Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. BioMed Research International, 2014, 1-11. doi:10.1155/2014/608979

Fernández-Tomé, S., Hernández-Ledesma, B., Chaparro, M., Indiano-Romacho, P., Bernardo, D., & Gisbert, J. P. (2019). Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends in Food Science & Technology, 88, 194-206. doi:10.1016/j.tifs.2019.03.017

Mudgil, P., Baby, B., Ngoh, Y.-Y., Kamal, H., Vijayan, R., Gan, C.-Y., & Maqsood, S. (2019). Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. LWT, 112, 108193. doi:10.1016/j.lwt.2019.05.091

Khatun, M. S., Hasan, M. M., & Kurata, H. (2019). PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Frontiers in Genetics, 10. doi:10.3389/fgene.2019.00129

Guha, S., & Majumder, K. (2018). Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. Journal of Food Biochemistry, 43(1), e12531. doi:10.1111/jfbc.12531

Gupta, S., Sharma, A. K., Shastri, V., Madhu, M. K., & Sharma, V. K. (2017). Prediction of anti-inflammatory proteins/peptides: an insilico approach. Journal of Translational Medicine, 15(1). doi:10.1186/s12967-016-1103-6

Dashper, S. G., Liu, S. W., & Reynolds, E. C. (2007). Antimicrobial Peptides and their Potential as Oral Therapeutic Agents. International Journal of Peptide Research and Therapeutics, 13(4), 505-516. doi:10.1007/s10989-007-9094-z

Corrêa, J. A. F., Evangelista, A. G., Nazareth, T. de M., & Luciano, F. B. (2019). Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia, 8, 100494. doi:10.1016/j.mtla.2019.100494

Agyei, D., & Danquah, M. K. (2012). Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science & Technology, 23(2), 62-69. doi:10.1016/j.tifs.2011.08.010

Kang, H., Seo, C., & Park, Y. (2015). Marine Peptides and Their Anti-Infective Activities. Marine Drugs, 13(1), 618-654. doi:10.3390/md13010618

Cheung, R., Ng, T., & Wong, J. (2015). Marine Peptides: Bioactivities and Applications. Marine Drugs, 13(7), 4006-4043. doi:10.3390/md13074006

Zanutto-Elgui, M. R., Vieira, J. C. S., Prado, D. Z. do, Buzalaf, M. A. R., Padilha, P. de M., Elgui de Oliveira, D., & Fleuri, L. F. (2019). Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry, 278, 823-831. doi:10.1016/j.foodchem.2018.11.119

Muhialdin, B. J., & Algboory, H. L. (2018). Identification of low molecular weight antimicrobial peptides from Iraqi camel milk fermented with Lactobacillus plantarum. PharmaNutrition, 6(2), 69-73. doi:10.1016/j.phanu.2018.02.002

BENKERROUM, N. (2010). Antimicrobial peptides generated from milk proteins: a survey and prospects for application in the food industry. A review. International Journal of Dairy Technology, 63(3), 320-338. doi:10.1111/j.1471-0307.2010.00584.x

Borrajo, P., Pateiro, M., Barba, F. J., Mora, L., Franco, D., Toldrá, F., & Lorenzo, J. M. (2019). Antioxidant and Antimicrobial Activity of Peptides Extracted from Meat By-products: a Review. Food Analytical Methods, 12(11), 2401-2415. doi:10.1007/s12161-019-01595-4

Lee, J. H., & Paik, H.-D. (2019). Anticancer and immunomodulatory activity of egg proteins and peptides: a review. Poultry Science, 98(12), 6505-6516. doi:10.3382/ps/pez381

Mine, Y., Ma, F., & Lauriau, S. (2004). Antimicrobial Peptides Released by Enzymatic Hydrolysis of Hen Egg White Lysozyme. Journal of Agricultural and Food Chemistry, 52(5), 1088-1094. doi:10.1021/jf0345752

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem