Mostrar el registro sencillo del ítem
dc.contributor.author | Saiz-Adalid, Luis-J. | es_ES |
dc.contributor.author | Gracia-Morán, Joaquín | es_ES |
dc.contributor.author | Gil Tomás, Daniel Antonio | es_ES |
dc.contributor.author | Baraza Calvo, Juan Carlos | es_ES |
dc.contributor.author | Gil, Pedro | es_ES |
dc.date.accessioned | 2021-04-29T03:32:17Z | |
dc.date.available | 2021-04-29T03:32:17Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165772 | |
dc.description.abstract | [EN] The Bose-Chaudhuri-Hocquenghem (BCH) codes are a well-known class of powerful error correction cyclic codes. BCH codes can correct multiple errors with minimal redundancy. Primitive BCH codes only exist for some word lengths, which do not frequently match those employed in digital systems. This paper focuses on double error correction (DEC) codes for word lengths that are in powers of two (8, 16, 32, and 64), which are commonly used in memories. We also focus on hardware implementations of the encoder and decoder circuits for very fast operations. This work proposes new low redundancy and reduced overhead (LRRO) DEC codes, with the same redundancy as the equivalent BCH DEC codes, but whose encoder, and decoder circuits present a lower overhead (in terms of propagation delay, silicon area usage and power consumption). We used a methodology to search parity check matrices, based on error patterns, in order to design the new codes. We implemented and synthesized them, and compared their results with those obtained for the BCH codes. Our implementation of the decoder circuits achieved reductions between 2.8% and 8.7% in the propagation delay, between 1.3% and 3.0% in the silicon area, and between 15.7% and 26.9% in the power consumption. Therefore, we propose LRRO codes as an alternative for protecting information against multiple errors. | es_ES |
dc.description.sponsorship | This research was supported in part by the Spanish Government, project TIN2016-81075-R, by Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), project 20190032, and by the Institute of Information and Communication Technologies (ITACA). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Electronics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Reliability | es_ES |
dc.subject | Fault tolerance | es_ES |
dc.subject | Error control codes | es_ES |
dc.subject | Double error correction | es_ES |
dc.subject | BCH codes | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Reducing the Overhead of BCH Codes: New Double Error Correction Codes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/electronics9111897 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//20190032/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-81075-R/ES/MECANISMOS DE ADAPTACION CONFIABLE PARA VEHICULOS AUTONOMOS Y CONECTADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180334/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Saiz-Adalid, L.; Gracia-Morán, J.; Gil Tomás, DA.; Baraza Calvo, JC.; Gil, P. (2020). Reducing the Overhead of BCH Codes: New Double Error Correction Codes. Electronics. 9(11):1-14. https://doi.org/10.3390/electronics9111897 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/electronics9111897 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 2079-9292 | es_ES |
dc.relation.pasarela | S\421521 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Institute of Information and Communication Technologies | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Fujiwara, E. (2005). Code Design for Dependable Systems. doi:10.1002/0471792748 | es_ES |
dc.description.references | Xinmiao, Z. (2017). VLSI Architectures for Modern Error-Correcting Codes. doi:10.1201/b18673 | es_ES |
dc.description.references | Bose, R. C., & Ray-Chaudhuri, D. K. (1960). On a class of error correcting binary group codes. Information and Control, 3(1), 68-79. doi:10.1016/s0019-9958(60)90287-4 | es_ES |
dc.description.references | Chen, P., Zhang, C., Jiang, H., Wang, Z., & Yue, S. (2015). High performance low complexity BCH error correction circuit for SSD controllers. 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). doi:10.1109/edssc.2015.7285089 | es_ES |
dc.description.references | IEEE 802.3-2018 - IEEE Standard for Ethernethttps://standards.ieee.org/standard/802_3-2018.html | es_ES |
dc.description.references | H.263: Video Coding for Low Bit Rate Communicationhttps://www.itu.int/rec/T-REC-H.263/en | es_ES |
dc.description.references | Vangelista, L., Benvenuto, N., Tomasin, S., Nokes, C., Stott, J., Filippi, A., … Morello, A. (2009). Key technologies for next-generation terrestrial digital television standard DVB-T2. IEEE Communications Magazine, 47(10), 146-153. doi:10.1109/mcom.2009.5273822 | es_ES |
dc.description.references | 2013 ITRS—International Technology Roadmap for Semiconductorshttp://www.itrs2.net/2013-itrs.html | es_ES |
dc.description.references | Ibe, E., Taniguchi, H., Yahagi, Y., Shimbo, K., & Toba, T. (2010). Impact of Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design Rule. IEEE Transactions on Electron Devices, 57(7), 1527-1538. doi:10.1109/ted.2010.2047907 | es_ES |
dc.description.references | Gil-Tomás, D., Gracia-Morán, J., Baraza-Calvo, J.-C., Saiz-Adalid, L.-J., & Gil-Vicente, P.-J. (2012). Studying the effects of intermittent faults on a microcontroller. Microelectronics Reliability, 52(11), 2837-2846. doi:10.1016/j.microrel.2012.06.004 | es_ES |
dc.description.references | Neubauer, A., Freudenberger, J., & Khn, V. (2007). Coding Theory. doi:10.1002/9780470519837 | es_ES |
dc.description.references | Morelos-Zaragoza, R. H. (2006). The Art of Error Correcting Coding. doi:10.1002/0470035706 | es_ES |
dc.description.references | Naseer, R., & Draper, J. (2008). DEC ECC design to improve memory reliability in Sub-100nm technologies. 2008 15th IEEE International Conference on Electronics, Circuits and Systems. doi:10.1109/icecs.2008.4674921 | es_ES |
dc.description.references | Saiz-Adalid, L.-J., Gracia-Moran, J., Gil-Tomas, D., Baraza-Calvo, J.-C., & Gil-Vicente, P.-J. (2019). Ultrafast Codes for Multiple Adjacent Error Correction and Double Error Detection. IEEE Access, 7, 151131-151143. doi:10.1109/access.2019.2947315 | es_ES |
dc.description.references | Saiz-Adalid, L.-J., Gil-Vicente, P.-J., Ruiz-García, J.-C., Gil-Tomás, D., Baraza, J.-C., & Gracia-Morán, J. (2013). Flexible Unequal Error Control Codes with Selectable Error Detection and Correction Levels. Computer Safety, Reliability, and Security, 178-189. doi:10.1007/978-3-642-40793-2_17 | es_ES |
dc.description.references | Saiz-Adalid, L.-J., Reviriego, P., Gil, P., Pontarelli, S., & Maestro, J. A. (2015). MCU Tolerance in SRAMs Through Low-Redundancy Triple Adjacent Error Correction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(10), 2332-2336. doi:10.1109/tvlsi.2014.2357476 | es_ES |
dc.description.references | Gracia-Moran, J., Saiz-Adalid, L. J., Gil-Tomas, D., & Gil-Vicente, P. J. (2018). Improving Error Correction Codes for Multiple-Cell Upsets in Space Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(10), 2132-2142. doi:10.1109/tvlsi.2018.2837220 | es_ES |
dc.description.references | Cadence: Computational Software for Intelligent System Designhttps://www.cadence.com | es_ES |
dc.description.references | Stine, J. E., Castellanos, I., Wood, M., Henson, J., Love, F., Davis, W. R., … Jenkal, R. (2007). FreePDK: An Open-Source Variation-Aware Design Kit. 2007 IEEE International Conference on Microelectronic Systems Education (MSE’07). doi:10.1109/mse.2007.44 | es_ES |
dc.description.references | NanGate FreePDK45 Open Cell Libraryhttp://www.nangate.com/?page_id=2325 | es_ES |