Vidal-Ferràndiz, A.; Carreño, A.; Ginestar Peiro, D.; Verdú Martín, GJ. (2020). A block Arnoldi method for the SPN equations. International Journal of Computer Mathematics. 97(1-2):341-357. https://doi.org/10.1080/00207160.2019.1602768
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165796
Title:
|
A block Arnoldi method for the SPN equations
|
Author:
|
Vidal-Ferràndiz, Antoni
Carreño, Amanda
Ginestar Peiro, Damián
Verdú Martín, Gumersindo Jesús
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
[EN] The simplified spherical harmonics equations are a useful approximation to the stationary neutron transport equation. The eigenvalue problem associated with them is a challenging problem from the computational point ...[+]
[EN] The simplified spherical harmonics equations are a useful approximation to the stationary neutron transport equation. The eigenvalue problem associated with them is a challenging problem from the computational point of view. In this work, we take advantage of the block structure of the involved matrices to propose the block inverse-free preconditioned Arnoldi method as an efficient method to solve this eigenvalue problem. For the spatial discretization, a continuous Galerkin finite element method implemented with a matrix-free technique is used to keep reasonable memory demands. A multilevel initialization using linear shape functions in the finite element method is proposed to improve the method convergence. This initialization only takes a small percentage of the total computational time. The proposed eigenvalue solver is compared to the standard power iteration method, the Krylov-Schur method and the generalized Davidson method. The numerical results show that it reduces the computational time to solve the eigenvalue problem.
[-]
|
Subjects:
|
Generalized eigenvalue problem
,
Neutron transport
,
Multilevel method
,
Block inverse-free preconditioned Arnoldi method
,
Generalized Davidson method
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
International Journal of Computer Mathematics. (issn:
0020-7160
)
|
DOI:
|
10.1080/00207160.2019.1602768
|
Publisher:
|
Taylor & Francis
|
Publisher version:
|
https://doi.org/10.1080/00207160.2019.1602768
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//BES-2015-072901/ES/BES-2015-072901/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA%2FTERMOHIDRAULICA PANTHER/
|
Thanks:
|
This work has been partially supported by Spanish Ministerio de Economia y Competitividad under projects ENE2017-89029-P, MTM2017-85669-P and BES-2015-072901. Moreover, it has been supported by the Catedra of the CSN Vicente ...[+]
This work has been partially supported by Spanish Ministerio de Economia y Competitividad under projects ENE2017-89029-P, MTM2017-85669-P and BES-2015-072901. Moreover, it has been supported by the Catedra of the CSN Vicente Serradell
[-]
|
Type:
|
Artículo
|