- -

Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alfaro-Fernandez, Pedro es_ES
dc.contributor.author Ruiz García, Rubén es_ES
dc.contributor.author Pagnozzi, Federico es_ES
dc.contributor.author Stützle, Thomas es_ES
dc.date.accessioned 2021-04-30T03:31:18Z
dc.date.available 2021-04-30T03:31:18Z
dc.date.issued 2020-05-01 es_ES
dc.identifier.issn 0377-2217 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165797
dc.description.abstract [EN] Industrial production scheduling problems are challenges that researchers have been trying to solve for decades. Many practical scheduling problems such as the hybrid flowshop are ATP-hard. As a result, researchers resort to metaheuristics to obtain effective and efficient solutions. The traditional design process of metaheuristics is mainly manual, often metaphor-based, biased by previous experience and prone to producing overly tailored methods that only work well on the tested problems and objectives. In this paper, we use an Automatic Algorithm Design (AAD) methodology to eliminate these limitations. AAD is capable of composing algorithms from components with minimal human intervention. We test the proposed MD for three different optimization objectives in the hybrid flowshop. Comprehensive computational and statistical testing demonstrates that automatically designed algorithms outperform specifically tailored state-of-the-art methods for the tested objectives in most cases. es_ES
dc.description.sponsorship Pedro Alfaro-Fernandez and Ruben Ruiz are partially supported by the Spanish Ministry of Science, Innovation, and Universities, under the project "OPTEP-Port Terminal Operations Optimization" (No. RTI2018-094940-B-I00) financed with FEDER funds and under grants BES-2013-064858 and EEBB-I-15-10089. This work was supported by the COMEX project (P7/36) within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office. Thomas Stiitzle acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research Director. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof European Journal of Operational Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Scheduling es_ES
dc.subject Hybrid flowshop es_ES
dc.subject Automatic algorithm configuration es_ES
dc.subject Automatic Algorithm Design es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ejor.2019.10.004 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//EEBB-I-15-10089/ES/EEBB-I-15-10089/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BELSPO//P7%2F36/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2013-064858/ES/BES-2013-064858/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Alfaro-Fernandez, P.; Ruiz García, R.; Pagnozzi, F.; Stützle, T. (2020). Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems. European Journal of Operational Research. 282(3):835-845. https://doi.org/10.1016/j.ejor.2019.10.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ejor.2019.10.004 es_ES
dc.description.upvformatpinicio 835 es_ES
dc.description.upvformatpfin 845 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 282 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\424873 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Belgian Federal Science Policy Office es_ES
dc.contributor.funder Fonds de la Recherche Scientifique, Belgica es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bożejko, W., Gnatowski, A., Niżyński, T., Affenzeller, M., & Beham, A. (2018). Local Optima Networks in Solving Algorithm Selection Problem for TSP. Advances in Intelligent Systems and Computing, 83-93. doi:10.1007/978-3-319-91446-6_9 es_ES
dc.description.references Bożejko, W., Pempera, J., & Smutnicki, C. (2013). Parallel tabu search algorithm for the hybrid flow shop problem. Computers & Industrial Engineering, 65(3), 466-474. doi:10.1016/j.cie.2013.04.007 es_ES
dc.description.references Burke, E. K., Hyde, M. R., & Kendall, G. (2012). Grammatical Evolution of Local Search Heuristics. IEEE Transactions on Evolutionary Computation, 16(3), 406-417. doi:10.1109/tevc.2011.2160401 es_ES
dc.description.references Cahon, S., Melab, N., & Talbi, E.-G. (2004). ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuristics, 10(3), 357-380. doi:10.1023/b:heur.0000026900.92269.ec es_ES
dc.description.references Carlier, J., & Neron, E. (2000). An Exact Method for Solving the Multi-Processor Flow-Shop. RAIRO - Operations Research, 34(1), 1-25. doi:10.1051/ro:2000103 es_ES
dc.description.references Chung, T.-P., & Liao, C.-J. (2013). An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem. Applied Soft Computing, 13(8), 3729-3736. doi:10.1016/j.asoc.2013.03.006 es_ES
dc.description.references Cui, Z., & Gu, X. (2015). An improved discrete artificial bee colony algorithm to minimize the makespan on hybrid flow shop problems. Neurocomputing, 148, 248-259. doi:10.1016/j.neucom.2013.07.056 es_ES
dc.description.references Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604-613. doi:10.1016/j.asoc.2015.02.006 es_ES
dc.description.references Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2011). A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236. doi:10.1016/j.cor.2010.10.008 es_ES
dc.description.references Dubois-Lacoste, J., Pagnozzi, F., & Stützle, T. (2017). An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem. Computers & Operations Research, 81, 160-166. doi:10.1016/j.cor.2016.12.021 es_ES
dc.description.references Gupta, J. N. D. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Journal of the Operational Research Society, 39(4), 359-364. doi:10.1057/jors.1988.63 es_ES
dc.description.references Gupta, J. N. D., & Stafford, E. F. (2006). Flowshop scheduling research after five decades. European Journal of Operational Research, 169(3), 699-711. doi:10.1016/j.ejor.2005.02.001 es_ES
dc.description.references Hidri, L., & Haouari, M. (2011). Bounding strategies for the hybrid flow shop scheduling problem. Applied Mathematics and Computation, 217(21), 8248-8263. doi:10.1016/j.amc.2011.02.108 es_ES
dc.description.references Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stuetzle, T. (2009). ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research, 36, 267-306. doi:10.1613/jair.2861 es_ES
dc.description.references Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. doi:10.1002/nav.3800010110 es_ES
dc.description.references Khalouli, S., Ghedjati, F., & Hamzaoui, A. (2010). A meta-heuristic approach to solve a JIT scheduling problem in hybrid flow shop. Engineering Applications of Artificial Intelligence, 23(5), 765-771. doi:10.1016/j.engappai.2010.01.008 es_ES
dc.description.references KhudaBukhsh, A. R., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2016). SATenstein: Automatically building local search SAT solvers from components. Artificial Intelligence, 232, 20-42. doi:10.1016/j.artint.2015.11.002 es_ES
dc.description.references Li, J., Pan, Q., & Wang, F. (2014). A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Applied Soft Computing, 24, 63-77. doi:10.1016/j.asoc.2014.07.005 es_ES
dc.description.references Liao, C.-J., Tjandradjaja, E., & Chung, T.-P. (2012). An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied Soft Computing, 12(6), 1755-1764. doi:10.1016/j.asoc.2012.01.011 es_ES
dc.description.references Lopez-Ibanez, M., & Stutzle, T. (2012). The Automatic Design of Multiobjective Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 16(6), 861-875. doi:10.1109/tevc.2011.2182651 es_ES
dc.description.references López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43-58. doi:10.1016/j.orp.2016.09.002 es_ES
dc.description.references Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A Discrete Firefly Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. IEEE Transactions on Evolutionary Computation, 18(2), 301-305. doi:10.1109/tevc.2013.2240304 es_ES
dc.description.references Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, 93-101. doi:10.1016/j.asoc.2014.02.005 es_ES
dc.description.references Marichelvam, M. K., Prabaharan, T., Yang, X. S., & Geetha, M. (2013). Solving hybrid flow shop scheduling problems using bat algorithm. International Journal of Logistics Economics and Globalisation, 5(1), 15. doi:10.1504/ijleg.2013.054428 es_ES
dc.description.references Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., & Stützle, T. (2014). Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Computers & Operations Research, 51, 190-199. doi:10.1016/j.cor.2014.05.020 es_ES
dc.description.references Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9 es_ES
dc.description.references Pan, Q.-K., & Dong, Y. (2014). An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Information Sciences, 277, 643-655. doi:10.1016/j.ins.2014.02.152 es_ES
dc.description.references Pan, Q.-K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research, 80, 50-60. doi:10.1016/j.cor.2016.11.022 es_ES
dc.description.references Pan, Q.-K., Wang, L., Li, J.-Q., & Duan, J.-H. (2014). A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Omega, 45, 42-56. doi:10.1016/j.omega.2013.12.004 es_ES
dc.description.references Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research, 103(1), 129-138. doi:10.1016/s0377-2217(96)00273-1 es_ES
dc.description.references Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009 es_ES
dc.description.references Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1-18. doi:10.1016/j.ejor.2009.09.024 es_ES
dc.description.references Sörensen, K. (2013). Metaheuristics-the metaphor exposed. International Transactions in Operational Research, 22(1), 3-18. doi:10.1111/itor.12001 es_ES
dc.description.references Vignier, A., Billaut, J.-C., & Proust, C. (1999). Les problèmes d’ordonnancement de type flow-shop hybride : état de l’art. RAIRO - Operations Research, 33(2), 117-183. doi:10.1051/ro:1999108 es_ES
dc.description.references Wang, S., Wang, L., Liu, M., & Xu, Y. (2013). An enhanced estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with identical parallel machines. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2043-2056. doi:10.1007/s00170-013-4819-y es_ES
dc.description.references Xu, Y., Wang, L., Wang, S., & Liu, M. (2013). An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines. Engineering Optimization, 45(12), 1409-1430. doi:10.1080/0305215x.2012.737784 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem