- -

Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liang, Y. es_ES
dc.contributor.author Alharthi, A.S. es_ES
dc.contributor.author Elolimy, A.A. es_ES
dc.contributor.author Bucktrout, R. es_ES
dc.contributor.author Lopreiato, V. es_ES
dc.contributor.author Cortes, I. es_ES
dc.contributor.author Xu, C. es_ES
dc.contributor.author Fernández Martínez, Carlos Javier es_ES
dc.contributor.author Trevisi, E. es_ES
dc.contributor.author Loor, J.J. es_ES
dc.date.accessioned 2021-04-30T03:31:38Z
dc.date.available 2021-04-30T03:31:38Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0022-0302 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165802
dc.description.abstract [EN] Peripartal cows mobilize not only body fat but also body protein to satisfy their energy requirements. The objective of this study was to determine the effect of prepartum BCS on blood biomarkers related to energy and nitrogen metabolism, and mRNA and protein abundance associated with AA metabolism and insulin signaling in subcutaneous adipose tissue (SAT) in peripartal cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS >= 3.5) or normal BCS (NBCS; n = 11, BCS <= 3.17) group at d 28 before expected parturition. Cows were fed the same diet as a total mixed ration before parturition and were fed the same lactation diet postpartum. Blood samples collected at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with energy and nitrogen metabolism. Biopsies of SAT harvested at -15, 7, and 30 d relative to parturition were used for mRNA (real timePCR) and protein abundance (Western blotting) assays. Data were subjected to ANOVA using the MIXED procedure of SAS (v. 9.4; SAS institute Inc., Cary, NC), with P <= 0.05 being the threshold for significance. Cows in HBCS had greater overall plasma nonesterified fatty acid concentrations, due to marked increases at 7 and 15 d postpartum. This response was similar (BCS x Day effect) to protein abundance of phosphorylated (p) protein kinase B (p-AKT), the insulin-induced glucose transporter (SLC2A4), and the sodium-coupled neutral AA transporter (SLC38A1). Abundance of these proteins was lower at -15 d compared with NBCS cows, and either increased (SLC2A4, SLC38A1) or did not change (p-AKT) at 7 d postpartum in IIBCS. Unlike protein abundance, however, overall mRNA abundances of the high-affinity cationic (SLC7A1), proton-coupled (SLC96A1), and sodium-coupled amino acid transporters (SLC,98,42) were greater in IIBCS than NBCS cows, due to upregulation in the postpartum phase. Those responses were similar to protein abundance of p-mTOR, which increased (BCS x Day effect) at 7 d in HBCS compared with NBCS cows. mRNA abundance of argininosuccinate lyase (ASL) and arginase 1 (ARG1) also was greater overall in HBCS cows. Together, these responses suggested impaired insulin signaling, coupled with greater postpartum AA transport rate and urea cycle activity in SAT of HBCS cows. An in vitro study using adipocyte and macrophage cocultures stimulated with various concentrations of fatty acids could provide some insights into the role of immune cells in modulating adipose tissue immunometabolic status, including insulin resistance and AA metabolism. es_ES
dc.description.sponsorship Y. Liang is a recipient of a doctoral fellowship from the China Scholarship Council (CSC, Beijing, China) to perform his PhD studies at the University of Illinois (Urbana). A. S. Alharthi received a fellowship from King Saud University (Riyadh, Saudi Arabia) to perform his PhD studies at the University of Illinois (Urbana). A. A. Elolimy was recipient of a fellowship from the Higher Education Ministry (Cairo, Egypt) to perform his PhD studies at the University of Illinois (Urbana). We thank Perdue AgriBusiness (Salisbury, MD) for the donation of ProvAAL2 AADvantage during the course of the experiment. The authors declare no conflicts of interest. es_ES
dc.language Inglés es_ES
dc.publisher American Dairy Science Association es_ES
dc.relation.ispartof Journal of Dairy Science es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Body condition es_ES
dc.subject Amino acid transporter es_ES
dc.subject Urea cycle es_ES
dc.subject Insulin resistance es_ES
dc.subject Subcutaneous adipose tissue es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3168/jds.2020-18612 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Liang, Y.; Alharthi, A.; Elolimy, A.; Bucktrout, R.; Lopreiato, V.; Cortes, I.; Xu, C.... (2020). Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows. Journal of Dairy Science. 103(11):10459-10476. https://doi.org/10.3168/jds.2020-18612 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3168/jds.2020-18612 es_ES
dc.description.upvformatpinicio 10459 es_ES
dc.description.upvformatpfin 10476 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 103 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 32921465 es_ES
dc.relation.pasarela S\430254 es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder King Saud University, Arabia Saudí es_ES
dc.contributor.funder Egyptian Ministry of Higher Education es_ES
dc.description.references Akter, S. H., Häussler, S., Germeroth, D., von Soosten, D., Dänicke, S., Südekum, K.-H., & Sauerwein, H. (2012). Immunohistochemical characterization of phagocytic immune cell infiltration into different adipose tissue depots of dairy cows during early lactation. Journal of Dairy Science, 95(6), 3032-3044. doi:10.3168/jds.2011-4856 es_ES
dc.description.references Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1 es_ES
dc.description.references Appuhamy, J. A. D. R. N., Knoebel, N. A., Nayananjalie, W. A. D., Escobar, J., & Hanigan, M. D. (2012). Isoleucine and Leucine Independently Regulate mTOR Signaling and Protein Synthesis in MAC-T Cells and Bovine Mammary Tissue Slices. The Journal of Nutrition, 142(3), 484-491. doi:10.3945/jn.111.152595 es_ES
dc.description.references Arriarán, S., Agnelli, S., Remesar, X., Fernández-López, J.-A., & Alemany, M. (2015). The urea cycle of rat white adipose tissue. RSC Advances, 5(113), 93403-93414. doi:10.1039/c5ra16398f es_ES
dc.description.references Batistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689 es_ES
dc.description.references Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185 es_ES
dc.description.references Bauchart-Thevret, C., Cui, L., Wu, G., & Burrin, D. G. (2010). Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. American Journal of Physiology-Endocrinology and Metabolism, 299(6), E899-E909. doi:10.1152/ajpendo.00068.2010 es_ES
dc.description.references Bewley, J. M., & Schutz, M. M. (2008). An Interdisciplinary Review of Body Condition Scoring for Dairy Cattle. The Professional Animal Scientist, 24(6), 507-529. doi:10.15232/s1080-7446(15)30901-3 es_ES
dc.description.references Bionaz, M., Chen, S., Khan, M. J., & Loor, J. J. (2013). Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation. PPAR Research, 2013, 1-28. doi:10.1155/2013/684159 es_ES
dc.description.references Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445 es_ES
dc.description.references Burgos, S. A., Dai, M., & Cant, J. P. (2010). Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway. Journal of Dairy Science, 93(1), 153-161. doi:10.3168/jds.2009-2444 es_ES
dc.description.references Busato, A., Faissler, D., Kupfer, U., & Blum, J. W. (2002). Body Condition Scores in Dairy Cows: Associations with Metabolic and Endocrine Changes in Healthy Dairy Cows. Journal of Veterinary Medicine Series A, 49(9), 455-460. doi:10.1046/j.1439-0442.2002.00476.x es_ES
dc.description.references Cai, H., Dong, L. Q., & Liu, F. (2016). Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends in Pharmacological Sciences, 37(4), 303-317. doi:10.1016/j.tips.2015.11.011 es_ES
dc.description.references Caroprese, M., Albenzio, M., Marino, R., Santillo, A., & Sevi, A. (2012). Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine. Research in Veterinary Science, 93(1), 202-209. doi:10.1016/j.rvsc.2011.07.015 es_ES
dc.description.references Closs, E. I., Boissel, J.-P., Habermeier, A., & Rotmann, A. (2006). Structure and Function of Cationic Amino Acid Transporters (CATs). Journal of Membrane Biology, 213(2), 67-77. doi:10.1007/s00232-006-0875-7 es_ES
dc.description.references Contreras, G. A., Kabara, E., Brester, J., Neuder, L., & Kiupel, M. (2015). Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum. Journal of Dairy Science, 98(9), 6176-6187. doi:10.3168/jds.2015-9370 es_ES
dc.description.references Cynober, L., Boucher, J. L., & Vasson, M.-P. (1995). Arginine metabolism in mammals. The Journal of Nutritional Biochemistry, 6(8), 402-413. doi:10.1016/0955-2863(95)00066-9 es_ES
dc.description.references Dann, H. M., Morin, D. E., Bollero, G. A., Murphy, M. R., & Drackley, J. K. (2005). Prepartum Intake, Postpartum Induction of Ketosis, and Periparturient Disorders Affect the Metabolic Status of Dairy Cows. Journal of Dairy Science, 88(9), 3249-3264. doi:10.3168/jds.s0022-0302(05)73008-3 es_ES
dc.description.references De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341 es_ES
dc.description.references De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318 es_ES
dc.description.references De Koster, J., Urh, C., Hostens, M., Van den Broeck, W., Sauerwein, H., & Opsomer, G. (2017). Relationship between serum adiponectin concentration, body condition score, and peripheral tissue insulin response of dairy cows during the dry period. Domestic Animal Endocrinology, 59, 100-104. doi:10.1016/j.domaniend.2016.12.004 es_ES
dc.description.references De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440 es_ES
dc.description.references Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777 es_ES
dc.description.references Durante, W. (2013). Role of Arginase in Vessel Wall Remodeling. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00111 es_ES
dc.description.references Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0 es_ES
dc.description.references Frayn, K. N., Khan, K., Coppack, S. W., & Elia, M. (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science, 80(5), 471-474. doi:10.1042/cs0800471 es_ES
dc.description.references Ghaffari, M. H., Sadri, H., Schuh, K., Dusel, G., Frieten, D., Koch, C., … Sauerwein, H. (2019). Biogenic amines: Concentrations in serum and skeletal muscle from late pregnancy until early lactation in dairy cows with high versus normal body condition score. Journal of Dairy Science, 102(7), 6571-6586. doi:10.3168/jds.2018-16034 es_ES
dc.description.references Ghaffari, M. H., Schuh, K., Dusel, G., Frieten, D., Koch, C., Prehn, C., … Sadri, H. (2019). Mammalian target of rapamycin signaling and ubiquitin-proteasome–related gene expression in skeletal muscle of dairy cows with high or normal body condition score around calving. Journal of Dairy Science, 102(12), 11544-11560. doi:10.3168/jds.2019-17130 es_ES
dc.description.references Ghaffari, M. H., Jahanbekam, A., Sadri, H., Schuh, K., Dusel, G., Prehn, C., … Sauerwein, H. (2019). Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis. Journal of Dairy Science, 102(12), 11561-11585. doi:10.3168/jds.2019-17114 es_ES
dc.description.references Gonzalez, E., & McGraw, T. E. (2009). Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proceedings of the National Academy of Sciences, 106(17), 7004-7009. doi:10.1073/pnas.0901933106 es_ES
dc.description.references González, F. D., Muiño, R., Pereira, V., Campos, R., & Benedito, J. L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. Journal of Veterinary Science, 12(3), 251. doi:10.4142/jvs.2011.12.3.251 es_ES
dc.description.references Häussler, S., Germeroth, D., Laubenthal, L., Ruda, L. F., Rehage, J., Dänicke, S., & Sauerwein, H. (2017). Short Communication: Immunohistochemical localization of the immune cell marker CD68 in bovine adipose tissue: impact of tissue alterations and excessive fat accumulation in dairy cows. Veterinary Immunology and Immunopathology, 183, 45-48. doi:10.1016/j.vetimm.2016.12.005 es_ES
dc.description.references Horie, T., Fukasawa, K., Iezaki, T., Park, G., Onishi, Y., Ozaki, K., … Hinoi, E. (2017). Hypoxic Stress Upregulates the Expression of Slc38a1 in Brown Adipocytes via Hypoxia-Inducible Factor-1α. Pharmacology, 101(1-2), 64-71. doi:10.1159/000480405 es_ES
dc.description.references Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., … Shimomura, I. (2007). Adipose Tissue Hypoxia in Obesity and Its Impact on Adipocytokine Dysregulation. Diabetes, 56(4), 901-911. doi:10.2337/db06-0911 es_ES
dc.description.references Hu, H., Moon, J., Chung, J. H., Kim, O. Y., Yu, R., & Shin, M.-J. (2015). Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity. Biochemical and Biophysical Research Communications, 464(3), 840-847. doi:10.1016/j.bbrc.2015.07.048 es_ES
dc.description.references Ibrahim, M. M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews, 11(1), 11-18. doi:10.1111/j.1467-789x.2009.00623.x es_ES
dc.description.references Jafari, A., Emmanuel, D. G. V., Christopherson, R. J., Thompson, J. R., Murdoch, G. K., Woodward, J., … Ametaj, B. N. (2006). Parenteral Administration of Glutamine Modulates Acute Phase Response in Postparturient Dairy Cows. Journal of Dairy Science, 89(12), 4660-4668. doi:10.3168/jds.s0022-0302(06)72516-4 es_ES
dc.description.references Jager, J., Grémeaux, T., Cormont, M., Le Marchand-Brustel, Y., & Tanti, J.-F. (2007). Interleukin-1β-Induced Insulin Resistance in Adipocytes through Down-Regulation of Insulin Receptor Substrate-1 Expression. Endocrinology, 148(1), 241-251. doi:10.1210/en.2006-0692 es_ES
dc.description.references Jamali Emam Gheise, N., Riasi, A., Zare Shahneh, A., Celi, P., & Ghoreishi, S. M. (2017). Effect of pre-calving body condition score and previous lactation on BCS change, blood metabolites, oxidative stress and milk production in Holstein dairy cows. Italian Journal of Animal Science, 16(3), 474-483. doi:10.1080/1828051x.2017.1290507 es_ES
dc.description.references Janovick, N. A., Boisclair, Y. R., & Drackley, J. K. (2011). Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science, 94(3), 1385-1400. doi:10.3168/jds.2010-3303 es_ES
dc.description.references Javed, K., & Fairweather, S. J. (2019). Amino acid transporters in the regulation of insulin secretion and signalling. Biochemical Society Transactions, 47(2), 571-590. doi:10.1042/bst20180250 es_ES
dc.description.references Ji, P., Drackley, J. K., Khan, M. J., & Loor, J. J. (2014). Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows. Journal of Dairy Science, 97(6), 3441-3448. doi:10.3168/jds.2013-7296 es_ES
dc.description.references Ji, P., Drackley, J. K., Khan, M. J., & Loor, J. J. (2014). Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows. Journal of Dairy Science, 97(6), 3431-3440. doi:10.3168/jds.2013-7295 es_ES
dc.description.references Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079 es_ES
dc.description.references Kanda, H. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. Journal of Clinical Investigation, 116(6), 1494-1505. doi:10.1172/jci26498 es_ES
dc.description.references Kenéz, Á., Ruda, L., Dänicke, S., & Huber, K. (2019). Insulin signaling and insulin response in subcutaneous and retroperitoneal adipose tissue in Holstein cows during the periparturient period. Journal of Dairy Science, 102(12), 11718-11729. doi:10.3168/jds.2019-16873 es_ES
dc.description.references Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122(20), 3589-3594. doi:10.1242/jcs.051011 es_ES
dc.description.references Laubenthal, L., Ruda, L., Sultana, N., Winkler, J., Rehage, J., Meyer, U., … Häussler, S. (2017). Effect of increasing body condition on oxidative stress and mitochondrial biogenesis in subcutaneous adipose tissue depot of nonlactating dairy cows. Journal of Dairy Science, 100(6), 4976-4986. doi:10.3168/jds.2016-12356 es_ES
dc.description.references Le Floc’h, N., Melchior, D., & Obled, C. (2004). Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livestock Production Science, 87(1), 37-45. doi:10.1016/j.livprodsci.2003.09.005 es_ES
dc.description.references Li, Y., Wei, H., Li, F., Chen, S., Duan, Y., Guo, Q., … Yin, Y. (2016). Supplementation of branched-chain amino acids in protein-restricted diets modulates the expression levels of amino acid transporters and energy metabolism associated regulators in the adipose tissue of growing pigs. Animal Nutrition, 2(1), 24-32. doi:10.1016/j.aninu.2016.01.003 es_ES
dc.description.references Liang, Y., Alharthi, A. S., Bucktrout, R., Elolimy, A. A., Lopreiato, V., Martinez-Cortés, I., … Loor, J. J. (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)–related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science, 103(7), 6439-6453. doi:10.3168/jds.2019-17813 es_ES
dc.description.references Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Methionine supply during the periparturient period enhances insulin signaling, amino acid transporters, and mechanistic target of rapamycin pathway proteins in adipose tissue of Holstein cows. Journal of Dairy Science, 102(5), 4403-4414. doi:10.3168/jds.2018-15738 es_ES
dc.description.references Liao, W., Nguyen, M. T. A., Yoshizaki, T., Favelyukis, S., Patsouris, D., Imamura, T., … Olefsky, J. M. (2007). Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 293(1), E219-E227. doi:10.1152/ajpendo.00695.2006 es_ES
dc.description.references Locher, L. F., Meyer, N., Weber, E.-M., Rehage, J., Meyer, U., Dänicke, S., & Huber, K. (2011). Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow. Journal of Dairy Science, 94(9), 4514-4523. doi:10.3168/jds.2011-4145 es_ES
dc.description.references Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047 es_ES
dc.description.references Mackenzie, B., & Erickson, J. D. (2004). Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pfl�gers Archiv European Journal of Physiology, 447(5), 784-795. doi:10.1007/s00424-003-1117-9 es_ES
dc.description.references Mann, S., Nydam, D. V., Abuelo, A., Leal Yepes, F. A., Overton, T. R., & Wakshlag, J. J. (2016). Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet. Journal of Dairy Science, 99(8), 6737-6752. doi:10.3168/jds.2016-10969 es_ES
dc.description.references Megahed, A. A., Hiew, M. W. H., Ragland, D., & Constable, P. D. (2019). Changes in skeletal muscle thickness and echogenicity and plasma creatinine concentration as indicators of protein and intramuscular fat mobilization in periparturient dairy cows. Journal of Dairy Science, 102(6), 5550-5565. doi:10.3168/jds.2018-15063 es_ES
dc.description.references Menchini, R. J., & Chaudhry, F. A. (2019). Multifaceted regulation of the system A transporter Slc38a2 suggests nanoscale regulation of amino acid metabolism and cellular signaling. Neuropharmacology, 161, 107789. doi:10.1016/j.neuropharm.2019.107789 es_ES
dc.description.references Minuti, A., Bionaz, M., Lopreiato, V., Janovick, N. A., Rodriguez-Zas, S. L., Drackley, J. K., & Loor, J. J. (2020). Prepartum dietary energy intake alters adipose tissue transcriptome profiles during the periparturient period in Holstein dairy cows. Journal of Animal Science and Biotechnology, 11(1). doi:10.1186/s40104-019-0409-7 es_ES
dc.description.references Moisá, S. J., Ji, P., Drackley, J. K., Rodriguez-Zas, S. L., & Loor, J. J. (2017). Transcriptional changes in mesenteric and subcutaneous adipose tissue from Holstein cows in response to plane of dietary energy. Journal of Animal Science and Biotechnology, 8(1). doi:10.1186/s40104-017-0215-z es_ES
dc.description.references Moyes, K. M., Drackley, J. K., Morin, D. E., & Loor, J. J. (2010). Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. Functional & Integrative Genomics, 10(1), 53-61. doi:10.1007/s10142-009-0154-7 es_ES
dc.description.references Mukesh, M., Bionaz, M., Graugnard, D. E., Drackley, J. K., & Loor, J. J. (2010). Adipose tissue depots of Holstein cows are immune responsive: Inflammatory gene expression in vitro. Domestic Animal Endocrinology, 38(3), 168-178. doi:10.1016/j.domaniend.2009.10.001 es_ES
dc.description.references Newgard, C. B. (2017). Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metabolism, 25(1), 43-56. doi:10.1016/j.cmet.2016.09.018 es_ES
dc.description.references Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., … Svetkey, L. P. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 9(4), 311-326. doi:10.1016/j.cmet.2009.02.002 es_ES
dc.description.references Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.2018-15362 es_ES
dc.description.references Newsholme, P., Procopio, J., Lima, M. M. R., Pithon-Curi, T. C., & Curi, R. (2003). Glutamine and glutamate?their central role in cell metabolism and function. Cell Biochemistry and Function, 21(1), 1-9. doi:10.1002/cbf.1003 es_ES
dc.description.references Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2014). Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. Journal of Dairy Science, 97(12), 7451-7464. doi:10.3168/jds.2014-8680 es_ES
dc.description.references Palmieri, E. M., Spera, I., Menga, A., Infantino, V., Iacobazzi, V., & Castegna, A. (2014). Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels. FEBS Letters, 588(24), 4807-4814. doi:10.1016/j.febslet.2014.11.015 es_ES
dc.description.references Petrus, P., Lecoutre, S., Dollet, L., Wiel, C., Sulen, A., Gao, H., … Rydén, M. (2020). Glutamine Links Obesity to Inflammation in Human White Adipose Tissue. Cell Metabolism, 31(2), 375-390.e11. doi:10.1016/j.cmet.2019.11.019 es_ES
dc.description.references Pires, J. A. A., Delavaud, C., Faulconnier, Y., Pomiès, D., & Chilliard, Y. (2013). Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. Journal of Dairy Science, 96(10), 6423-6439. doi:10.3168/jds.2013-6801 es_ES
dc.description.references Rico, J. E., Myers, W. A., Laub, D. J., Davis, A. N., Zeng, Q., & McFadden, J. W. (2018). Hot topic: Ceramide inhibits insulin sensitivity in primary bovine adipocytes. Journal of Dairy Science, 101(4), 3428-3432. doi:10.3168/jds.2017-13983 es_ES
dc.description.references Rico, J. E., Bandaru, V. V. R., Dorskind, J. M., Haughey, N. J., & McFadden, J. W. (2015). Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation. Journal of Dairy Science, 98(11), 7757-7770. doi:10.3168/jds.2015-9519 es_ES
dc.description.references Rius, A. G., Appuhamy, J. A. D. R. N., Cyriac, J., Kirovski, D., Becvar, O., Escobar, J., … Hanigan, M. D. (2010). Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. Journal of Dairy Science, 93(7), 3114-3127. doi:10.3168/jds.2009-2743 es_ES
dc.description.references Roche, J. R., Kay, J. K., Friggens, N. C., Loor, J. J., & Berry, D. P. (2013). Assessing and Managing Body Condition Score for the Prevention of Metabolic Disease in Dairy Cows. Veterinary Clinics of North America: Food Animal Practice, 29(2), 323-336. doi:10.1016/j.cvfa.2013.03.003 es_ES
dc.description.references Ruan, H., & Dong, L. Q. (2016). Adiponectin signaling and function in insulin target tissues. Journal of Molecular Cell Biology, 8(2), 101-109. doi:10.1093/jmcb/mjw014 es_ES
dc.description.references Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799-806. doi:10.1038/414799a es_ES
dc.description.references Saremi, B., Al-Dawood, A., Winand, S., Müller, U., Pappritz, J., von Soosten, D., … Sauerwein, H. (2012). Bovine haptoglobin as an adipokine: Serum concentrations and tissue expression in dairy cows receiving a conjugated linoleic acids supplement throughout lactation. Veterinary Immunology and Immunopathology, 146(3-4), 201-211. doi:10.1016/j.vetimm.2012.03.011 es_ES
dc.description.references Schuh, K., Sadri, H., Häussler, S., Webb, L. A., Urh, C., Wagner, M., … Sauerwein, H. (2019). Comparison of performance and metabolism from late pregnancy to early lactation in dairy cows with elevated v. normal body condition at dry-off. Animal, 13(7), 1478-1488. doi:10.1017/s1751731118003385 es_ES
dc.description.references Sundberg, B. E., Wååg, E., Jacobsson, J. A., Stephansson, O., Rumaks, J., Svirskis, S., … Fredriksson, R. (2008). The Evolutionary History and Tissue Mapping of Amino Acid Transporters Belonging to Solute Carrier Families SLC32, SLC36, and SLC38. Journal of Molecular Neuroscience, 35(2), 179-193. doi:10.1007/s12031-008-9046-x es_ES
dc.description.references Takagi, M., Yonezawa, T., Haga, S., Shingu, H., Kobayashi, Y., Takahashi, T., … Katoh, K. (2008). Changes of activity and mRNA expression of urea cycle enzymes in the liver of developing Holstein calves1. Journal of Animal Science, 86(7), 1526-1532. doi:10.2527/jas.2007-0799 es_ES
dc.description.references Trayhurn, P. (2013). Hypoxia and Adipose Tissue Function and Dysfunction in Obesity. Physiological Reviews, 93(1), 1-21. doi:10.1152/physrev.00017.2012 es_ES
dc.description.references Trevisi, E., Amadori, M., Cogrossi, S., Razzuoli, E., & Bertoni, G. (2012). Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Research in Veterinary Science, 93(2), 695-704. doi:10.1016/j.rvsc.2011.11.008 es_ES
dc.description.references Vailati-Riboni, M., Farina, G., Batistel, F., Heiser, A., Mitchell, M. D., Crookenden, M. A., … Loor, J. J. (2017). Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. Journal of Dairy Science, 100(3), 2334-2350. doi:10.3168/jds.2016-11790 es_ES
dc.description.references Vailati-Riboni, M., Kanwal, M., Bulgari, O., Meier, S., Priest, N. V., Burke, C. R., … Loor, J. J. (2016). Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. Journal of Dairy Science, 99(1), 758-770. doi:10.3168/jds.2015-10046 es_ES
dc.description.references Vailati Riboni, M., Meier, S., Priest, N. V., Burke, C. R., Kay, J. K., McDougall, S., … Loor, J. J. (2015). Adipose and liver gene expression profiles in response to treatment with a nonsteroidal antiinflammatory drug after calving in grazing dairy cows. Journal of Dairy Science, 98(5), 3079-3085. doi:10.3168/jds.2014-8579 es_ES
dc.description.references Van der Vos, K. E., & Coffer, P. J. (2012). Glutamine metabolism links growth factor signaling to the regulation of autophagy. Autophagy, 8(12), 1862-1864. doi:10.4161/auto.22152 es_ES
dc.description.references Wang, D., Wan, X., Peng, J., Xiong, Q., Niu, H., Li, H., … Jiang, S. (2017). The effects of reduced dietary protein level on amino acid transporters and mTOR signaling pathway in pigs. Biochemical and Biophysical Research Communications, 485(2), 319-327. doi:10.1016/j.bbrc.2017.02.084 es_ES
dc.description.references Wang, X., Frank, J. W., Little, D. R., Dunlap, K. A., Satterfield, M. C., Burghardt, R. C., … Bazer, F. W. (2014). Functional role of arginine during the peri‐implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm. The FASEB Journal, 28(7), 2852-2863. doi:10.1096/fj.13-248757 es_ES
dc.description.references Webb, L. A., Sadri, H., Schuh, K., Egert, S., Stehle, P., Meyer, I., … Sauerwein, H. (2020). Branched-chain amino acids: Abundance of their transporters and metabolizing enzymes in adipose tissue, skeletal muscle, and liver of dairy cows at high or normal body condition. Journal of Dairy Science, 103(3), 2847-2863. doi:10.3168/jds.2019-17147 es_ES
dc.description.references Webb, L. A., Sadri, H., von Soosten, D., Dänicke, S., Egert, S., Stehle, P., & Sauerwein, H. (2019). Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation. Journal of Dairy Science, 102(4), 3556-3568. doi:10.3168/jds.2018-14463 es_ES
dc.description.references Whiteman, E. L., Cho, H., & Birnbaum, M. J. (2002). Role of Akt/protein kinase B in metabolism. Trends in Endocrinology & Metabolism, 13(10), 444-451. doi:10.1016/s1043-2760(02)00662-8 es_ES
dc.description.references Xue, M.-Y., Sun, H.-Z., Wu, X.-H., Liu, J.-X., & Guan, L. L. (2020). Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome, 8(1). doi:10.1186/s40168-020-00819-8 es_ES
dc.description.references Zachut, M., Honig, H., Striem, S., Zick, Y., Boura-Halfon, S., & Moallem, U. (2013). Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss. Journal of Dairy Science, 96(9), 5656-5669. doi:10.3168/jds.2012-6142 es_ES
dc.description.references Zhang, F., Li, D., Wu, Q., Sun, J., Guan, W., Hou, Y., … Wang, J. (2019). Prepartum body conditions affect insulin signaling pathways in postpartum adipose tissues in transition dairy cows. Journal of Animal Science and Biotechnology, 10(1). doi:10.1186/s40104-019-0347-4 es_ES
dc.description.references Zhou, Z., Bulgari, O., Vailati-Riboni, M., Trevisi, E., Ballou, M. A., Cardoso, F. C., … Loor, J. J. (2016). Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. Journal of Dairy Science, 99(11), 8956-8969. doi:10.3168/jds.2016-10986 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem