- -

Can spatial distribution of ungulates be predicted by modeling camera trap data related to landscape indices? A case study in a fragmented mediterranean landscape

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Can spatial distribution of ungulates be predicted by modeling camera trap data related to landscape indices? A case study in a fragmented mediterranean landscape

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belda, Antonio es_ES
dc.contributor.author Oltra Crespo, Sandra es_ES
dc.contributor.author Miró Martínez, Pau es_ES
dc.contributor.author Zaragozí, Benito es_ES
dc.date.accessioned 2021-04-30T03:31:51Z
dc.date.available 2021-04-30T03:31:51Z
dc.date.issued 2020-01-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165807
dc.description.abstract [EN] Camera trap applications range from studying wildlife habits to detecting rare species, which are difficult to capture by more traditional techniques. In this work, we aimed at finding the best model to predict the distribution pattern of wildlife and to explain the relationship between environmental conditions with the species detected by camera traps. We applied two types of statistical models in a specific Mediterranean landscape case. The results of both models shown adjustments over 80 %. First, we ran a Principal Components Analysis (PCA). Discriminant, and logistic analyses were performed for ungulates in general, and three species in particular: Barbary sheep, mouflon, and wild boar. The same environmental conditions explained the presence of these species in all the proposed models. Hence, we proved the generally positive influence of patch size on the presence of ungulates and negative influence of the fractal dimension and density edge. We quantified the relationships between a suite of landscape metrics measured in different grids to test whether spatial heterogeneity plays a major role in determining the distribution of ungulates. We explained much of the variation in distribution with metrics, specifically related to habitat heterogeneity. That outcome highlighted the potential importance of spatial heterogeneity in determining the distribution of large herbivores. We discussed our results in the forestry conservation practices context and discuss potential ways to integrate ungulate management and forestry practices better. es_ES
dc.description.sponsorship We thank all the hunting managers for their useful comments and their collaborative attitude. We would also like to thank the Regional Environment Council staff (Conselleria de Medio Ambiente, Agua, Urbanismo y Vivienda) and the Nature Protection Unit of security forces (SEPRONA). Finally, we thank J.E. Martinez-Perez for cartographic advices. This research was supported by the Spanish Ministry of Education and Science (CGL2004-00202), by the Generalitat Valenciana (GV-04B-732) and SIOSE-INNOVA Research project (CSO2016-79420-R AEI/FEDER UE). es_ES
dc.language Inglés es_ES
dc.publisher Universidad Nacional de Colombia es_ES
dc.relation.ispartof Caldasia (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Camera trap es_ES
dc.subject Discriminant analysis es_ES
dc.subject Landscape metrics es_ES
dc.subject Logistic analysis es_ES
dc.subject Multivariant analysis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Can spatial distribution of ungulates be predicted by modeling camera trap data related to landscape indices? A case study in a fragmented mediterranean landscape es_ES
dc.title.alternative ¿Se puede predecir la distribución espacial de ungulados mediante la modelización de imágenes de fototrampeo relacionadas con índices del paisaje? Un estudio de caso en un paisaje mediterráneo fragmentado es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.15446/caldasia.v42n1.76384 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CGL2004-00202/ES/GESTION SOSTENIBLE DE RECURSOS CINEGETICOS A ESCALA REGIONAL EN UN GRADIENTE TERMO-MESOMEDITERRANEO DE MOSAICOS DEL PAISAJE EN EL ESTE DE LA PROVINCIA DE ALICANTE. ANALISIS MEDIANTE SIG Y GPS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV-04B-732/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CSO2016-79420-R/ES/INNOVACIONES TECNICAS Y METODOLOGICAS EN EL SISTEMA DE INFORMACION SOBRE OCUPACION DEL SUELO DE ESPAÑA (SIOSE) Y SU APLICACION ESTUDIOS GEOGRAFICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Belda, A.; Oltra Crespo, S.; Miró Martínez, P.; Zaragozí, B. (2020). Can spatial distribution of ungulates be predicted by modeling camera trap data related to landscape indices? A case study in a fragmented mediterranean landscape. Caldasia (Online). 42(1):96-104. https://doi.org/10.15446/caldasia.v42n1.76384 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.15446/caldasia.v42n1.76384 es_ES
dc.description.upvformatpinicio 96 es_ES
dc.description.upvformatpfin 104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 0366-5232 es_ES
dc.relation.pasarela S\419316 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abdul-Wahab SA, Bakheit CS, Al-Alawi SM. 2005. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ Model Softw. 20(10):1263–1271. doi: https://doi.org/10.1016/j.envsoft.2004.09.001. es_ES
dc.description.references Acevedo P, Farfán MA, Márquez AL, Delibes-Mateos M, Real R, Vargas JM. 2011. Past, present and future of wild ungulates in relation to changes in land use. Landsc Ecol. 26(1):19–31. doi: https://doi.org/10.1007/s10980-010-9538-2. es_ES
dc.description.references Agarwal C, Green GM, Grove JM, Evans TP, Schweik CM. 2002. A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice. GTR NE-297. Newton Square, PA: U.S.D.A. Forest Service, Northeastern Research Station. 61 p. es_ES
dc.description.references Belda A, Martínez-Perez JE, Peiró V, Seva E, Arques J. 2011. Main landscape metrics affecting abundance and diversity of game species in a semi-arid agroecosystem in the Mediterranean region. Span. J. Agric. Res. 9(4):1197–1212. doi: https://doi.org/10.5424/sjar/20110904-470-10. es_ES
dc.description.references Belda A, Zaragozí B, Belda I, Martínez JE, Seva E. 2012. Traditional knowledge of medicinal plants in the Serra de Mariola Natural Park, South-Eastern Spain. Afr J Tradit Complement Altern Med. 10(2):299–309. doi: https://doi.org/10.4314/ajtcam.v10i2.15. es_ES
dc.description.references Belda A, Belenguer, R, Zaragozí B, Ferri, V. 2016. Abundance and distribution of European badger – Meles meles (Linnaeus, 1758) in the Sierra de Mariola Natural Park (C. Valenciana). BAGE. 70:467–469. doi: https://doi.org/10.21138/bage.2164. es_ES
dc.description.references Botello F, Monroy G, Illoldi-Rangel A, Trujillo-Bolio I, Sánchez-Cordero V. 2007. Systematic images from camera-traps: a proposal of data card. Rev Mex Biodivers. 78:207–210. es_ES
dc.description.references Calenge C, Maillard D, Fournier P, Fouque C. 2004. Efficiency of spreading maize in the garrigues to reduce wild boar (Sus scrofa) damage to Mediterranean vineyards. Eur. J. Wild. Res. 50(3):112–120. doi: https://doi.org/10.1007/s10344-004-0047-y. es_ES
dc.description.references Can OE, Togan I. 2009. Camera trapping of large mammals in Yenice Forest, Turkey: Local information versus camera traps. Oryx 43(3):427–430. doi: https://doi.org/10.1017/S0030605308000628. es_ES
dc.description.references Cassinello J, Acevedo P, Hortal J. 2006. Prospects for population expansion of the exotic aoudad (Ammotragus lervia, Bovidae) in the Iberian Peninsula: clues from habitat suitability modelling. Diversity Distrib. 12:666–678. doi: https://doi.org/10.1111/j.1472-4642.2006.00292.x. es_ES
dc.description.references Cuevas MF, Ojeda RA, Jaksic FM. 2013. Multi-scale patterns of habitat use by wild boar in the Monte Desert of Argentina. Basic Appl Ecol. 14(4):320–328. doi: https://doi.org/10.1016/j.baae.2013.03.001. es_ES
dc.description.references Cutler TL, Swann DE. 1999. Using remote photography in Wildlife Ecology: a review. Wild. Soc. Bull. 27(3):571–581. Fegraus EH, Lin K, Ahumada JA, Baru C, Chandra S, Youn C. 2011. Data acquisition and management software for camera trap data: A case study from the TEAM Network. Ecol Inform. 6(6):345–353. doi: https://doi.org/10.1016/j.ecoinf.2011.06.003. es_ES
dc.description.references Harris G, Thompson R, Childs JL, Sanderson JG. 2010. Automatic storage and analysis of camera trap data. Bull. Ecol. Soc. Amer. 91(3):352–360. doi: https://doi.org/10.1890/0012-9623-91.3.352. es_ES
dc.description.references Holloran MJ, Anderson SH. 2003. Direct identification of northern sage-grouse, Centrocercus urophasianus, nest predators using remote sensing cameras. Canad. Fie. Nat. 117(2):308–310. doi: https://doi.org/10.22621/cfn.v117i2.804. es_ES
dc.description.references [ICV] Instituto Cartográfico Valenciano. c2005. Ortofoto ODCV05: Comunidad Valenciana-Provincia de Alicante. [last accessed: 15 May 2015]. http://www.icv.gva.es es_ES
dc.description.references Kelly MJ. 2008. Design, evaluate, refine: camera trap studies for elusive species. Anim. Conserv. 11:182–184. doi: https://doi.org/10.1111/j.1469-1795.2008.00179.x. es_ES
dc.description.references Korre A. 1999. Statistical and spatial assessment of soil heavy metal contamination in areas of poorly recorded, complex sources of pollution. Part 1: factor analysis for contamination assessment. Stoch Environ Res Risk Assess. 13(4):260–287. doi: https://doi.org/10.1007/s004770050043. es_ES
dc.description.references Lütolf M, Bolliger J, Kienast F, Guisan A. 2009. Scenario based assessment of future land use change butterfly species distributions. Biodivers. Conserv. 18:1329–1347. doi: https://doi.org/10.1007/s10531-008-9541-y. es_ES
dc.description.references Mackenzie D, Nichols J, Lachman G, Droege S, Royle J, Langtimm C. 2002. Estimation site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255. doi: https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2. es_ES
dc.description.references Mcgarigal K, Cushman S A, Neel M C, Ene E. c2002. FRAGSTATS: Spatial pattern analysis program for categorical maps. Univ Massachusetts, Amherst. [last accessed: 07 May 2015]. http://www.umass.edu/landeco/research/fragstats/fragstats.html es_ES
dc.description.references Millington JDA, Perry GLW, Romero-Calcerrada R. 2007. Regression Techniques for Examining Land Use/Cover Change: A Case Study of a Mediterranean Landscape. Ecosystems 10(4):562– 578. doi: https://doi.org/10.1007/s10021-007-9020-4. es_ES
dc.description.references Rowcliffe JM, Field J, Turvey ST, Carbone C. 2008. Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol. 45(4):1228–1236. doi: https://doi.org/10.1111/j.1365-2664.2008.01473.x. es_ES
dc.description.references Royle JA, Nichols JD. 2003. Estimating abundance from repeated presence-absence data or point counts. Ecology 84(3):777–790. doi: https://doi.org/10.1890/0012-9658(2003)084[0777:EA-FRPA]2.0.CO;2. es_ES
dc.description.references Silveira L, Jácomo ATA, Diniz-Filho JAF. 2003. Camera trap, line transect census and track survey a comparative evaluation. Biol. Conserv. 114(3):351–355. doi: https://doi.org/10.1016/S0006-3207(03)00063-6. es_ES
dc.description.references Smith R, Vaughan N, Robinson A, Harris S. 2004. Conservation of European hares Lepus europaeus in Britain: is increasing habitat heterogeneity in farmland the answer? J. Appl. Ecol. 41(6): 1092–1102. doi: https://doi.org/10.1111/j.0021-8901.2004.00976.x. es_ES
dc.description.references Stanley TR, Royle JA. 2005. Estimating site occupancy and abundance using indirect detection indices. J. Wildl. Manage. 69(3):874–883. doi: https://doi.org/10.2193/0022-541X(2005)069[0874:ESOAAU]2.0.CO;2. es_ES
dc.description.references Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE. 2008. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 9(3–4):137–152. doi: https://doi.org/10.1111/j.1365-2664.2007.01416.x. es_ES
dc.description.references Yamaura Y, Katoh K, Fujita G, Higuchi H. 2005. The effect of landscape contexts on wintering bird communities in rural Japan. For. Ecol. Manage. 216(1–3):187–200. doi: https://doi.org/10.1016/j.foreco.2005.05.028. es_ES
dc.description.references Zaragozí B, Belda A, Giménez P, Navarro JT, Bonet A. 2015. Ad-vances in camera trap data management tools: Towards collaborative development and integration with GIS. Ecol. Inform. 30:6–11. doi: https://doi.org/10.1016/j.ecoinf.2015.08.001. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem