Mostrar el registro sencillo del ítem
dc.contributor.author | Santibañez, N. | es_ES |
dc.contributor.author | Mazzorana, B. | es_ES |
dc.contributor.author | Iribarren, P. | es_ES |
dc.contributor.author | Mao, L. | es_ES |
dc.contributor.author | Rojas, I. | es_ES |
dc.date.accessioned | 2021-04-30T11:49:59Z | |
dc.date.available | 2021-04-30T11:49:59Z | |
dc.date.issued | 2021-04-30 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/165815 | |
dc.description.abstract | [EN] Alluvial fans are episodically affected by the distributary dynamics caused by extreme biphasic flow processes. The solid-fraction component of biphasic flows is generally represented by inorganic sediment, but these events may also carry significant amounts of large wood. The aim of the study was to assess on a physical alluvial fan model the randomness of morphodynamical processes and exposure associated to a set of specific loading conditions and at exploring how these patterns change if large wood is added to the biphasic mixture in a fixed proportion of the solid fraction. The experiments were conducted varying systematically the total volume, the sediment fraction of the biphasic mixture and the applied stream power. Two sets of experiments were run, either with and without a fixed proportion of the solid fraction constituted by large wood. Our results confirm that the exposure associated to specific loading conditions exhibits a remarkable randomness, that the applied stream power has a decisive effect on the variability of exposure and that the fixed portion of large wood strongly interfere with the distributary dynamics on alluvial fans. | es_ES |
dc.description.abstract | [ES] Los abanicos aluviales se ven afectados episódicamente por la dinámica distributiva generada por procesos de flujo bifásico extremos. El sedimento inorgánico no es el único componente de la fracción sólida de los flujos bifásicos; también hay que considerar la carga de madera de gran tamaño. Siguiendo un enfoque experimental, el objetivo fue evaluar, en un modelo físico, la aleatoriedad de la morfodinámica y de la exposición asociadas a un conjunto de condiciones de carga específicas. Se exploró, además, cómo cambian estos patrones si se agrega madera de gran tamaño a la mezcla bifásica en una proporción fija de la fracción sólida. Variando sistemáticamente las condiciones de carga, se ejecutaron dos conjuntos de experimentos, uno con y otro sin una proporción fija de la fracción sólida constituida por madera de gran tamaño. Los resultados obtenidos confirman que los patrones de exposición asociados a una misma carga de sedimentos exhiben una notable aleatoriedad, que la potencia de la corriente aplicada ejerce un efecto decisivo en esos patrones y que la porción fija de madera de gran tamaño interfiere fuertemente con la dinámica distributiva de flujos bifásicos en abanicos aluviales. | es_ES |
dc.description.sponsorship | El estudio fue desarrollado con el soporte de dos proyectos Fondecyt: (i) “The flood memory of a river system: using both experimental and field-based approaches to unravel the role of unsteady flow and antecedent flows on sediment dynamics during floods”. FONDECYT 1170657 (ANID) del investigator principal Luca Mao y (ii) “Unravelling the dynamics and impacts of sediment-laden flows in urban areas in southern Chile as a basis for innovative adaptation (SEDIMPACT)” FONDECYT 1200091 (ANID) del investigator principal Bruno Mazzorana | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Alluvial fan | es_ES |
dc.subject | Experimental model | es_ES |
dc.subject | Biphasic flows | es_ES |
dc.subject | Distributive dynamics | es_ES |
dc.subject | Large wood (LW) | es_ES |
dc.subject | Abanico aluvial | es_ES |
dc.subject | Modelo experimental | es_ES |
dc.subject | Flujos bifásicos | es_ES |
dc.subject | Dinámica distributiva | es_ES |
dc.subject | Madera de gran tamaño (LW) | es_ES |
dc.title | Dinámica distributiva de flujos bifásicos con carga de madera en un abanico aluvial experimental | es_ES |
dc.title.alternative | Distributary behavior of biphasic flows with wood load on an experimental alluvial fan | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2021.14703 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1170657/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1200091/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Santibañez, N.; Mazzorana, B.; Iribarren, P.; Mao, L.; Rojas, I. (2021). Dinámica distributiva de flujos bifásicos con carga de madera en un abanico aluvial experimental. Ingeniería del agua. 25(2):145-168. https://doi.org/10.4995/ia.2021.14703 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2021.14703 | es_ES |
dc.description.upvformatpinicio | 145 | es_ES |
dc.description.upvformatpfin | 168 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\14703 | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.description.references | Anstey, R.L. 1965. Physical characteristics of alluvial fans. Natick, MA: Army Natick Laboratory, Technical Report, ES-20. | es_ES |
dc.description.references | Antronico, L., Greco, R., Robustelli, G., Sorriso-Valvo, M. 2015. Short-term evolution of an active basin-fan system, Aspromonte, south Italy. Geomorphology, 228, 536-551. https://doi.org/10.1016/j.geomorph.2014.10.013 | es_ES |
dc.description.references | Barenblatt, G.I. (2003). Scaling. Cambridge University Press, Cambridge. 171 pp. | es_ES |
dc.description.references | Blair, T.C. 2003. Features and origin of the giant Cucomungo Canyon alluvial fan, Eureka Valley, California. Special Paper of the Geological Society of America, 370, 105-126. https://doi.org/10.1130/0-8137-2370-1.105 | es_ES |
dc.description.references | Blair, T.C., McPherson, J.G. 2009. Processes and Forms of Alluvial Fans. In: Parsons A.J., Abrahams A.D. (eds) Geomorphology of Desert Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5719-9_14 | es_ES |
dc.description.references | Bryant, M., Falk, P., Paola, C. 1995. Experimental study of avulsion frequency and rate of deposition. Geology, 23(4), 365-368. https://doi.org/10.1130/0091-7613(1995)023%3C0365:ESOAFA%3E2.3.CO;2 | es_ES |
dc.description.references | Chow, V.T. 1994. Hidráulica de canales abiertos. McGraw-Hill Interamericana S.A. Santafé de Bogotá, Colombia. | es_ES |
dc.description.references | Clarke, L.E. 2015. Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 244, 135-145. https://doi.org/10.1016/j.geomorph.2015.04.013 | es_ES |
dc.description.references | Clarke, L., Quine, T.A., Nicholas, A. 2010. An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 115(3-4), 278-285. https://doi.org/10.1016/j.geomorph.2009.06.033 | es_ES |
dc.description.references | D'Agostino, V., Cesca, M., Marchi, L. 2010. Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology, 115(3-4), 294-304. https://doi.org/10.1016/j.geomorph.2009.06.032 | es_ES |
dc.description.references | Davies, T.R., McSaveney, M.J., Clarkson, P.J. 2003. Anthropic aggradation of the Waiho River, Westland, New Zealand: Microscale modelling. Earth Surface Processes and Landforms, 28(2), 209-218. https://doi.org/10.1002/esp.449 | es_ES |
dc.description.references | De Haas, T., Densmore, A.L., Stoffel, M., Suwa, H., Imaizumi, F., Ballesteros-Cánovas, J.A., Wasklewicz, T. 2018. Avulsions and the spatio-temporal evolution of debris-flow fans. Earth-Science Reviews, 177, 53-75. https://doi.org/10.1016/j.earscirev.2017.11.007 | es_ES |
dc.description.references | Fuchs, S., Keiler, M., Zischg, A. 2015. A spatiotemporal multi-hazard exposure assessment based on property data. Natural Hazards and Earth System Sciences, 15(9), 2127-2142. https://doi.org/10.5194/nhess-15-2127-2015 | es_ES |
dc.description.references | Fuchs, S. 2009. Susceptibility versus resilience to mountain hazards in Austria - Paradigms of vulnerability revisited. Natural Hazards and Earth System Science, 9(2), 337-352. https://doi.org/10.5194/nhess-9-337-2009 | es_ES |
dc.description.references | Fuchs, S., Karagiorgos, K., Kitikidou, K., Maris, F., Paparrizos, S., Thaler, T. 2017a. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrology and Earth System Sciences, 21(6), 3183-3198. https://doi.org/10.5194/hess-21-3183-2017 | es_ES |
dc.description.references | Fuchs, S., Röthlisberger, V., Thaler, T., Zischg, A., Keiler, M. 2017b. Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps. Annals of the American Association of Geographers, 107(2), 382-392. https://doi.org/10.1080/24694452.2016.1235494 | es_ES |
dc.description.references | Gschnitzer, T., Gems, B., Mazzorana, B., Aufleger, M. 2017. Towards a robust assessment of bridge clogging processes in flood risk management. Geomorphology, 279, 128-140. https://doi.org/10.1016/j.geomorph.2016.11.002 | es_ES |
dc.description.references | Guerit, L., Devauchelle, O., Lajeunesse, E., Barrier, L. 2014. Laboratory alluvial fans in one dimension. Physical Review E, 90(2), 1-7. https://doi.org/10.1103/PhysRevE.90.022203 | es_ES |
dc.description.references | Hooke, R.L. 1968. Model geology: Prototype and laboratory streams: Discussion. Geological Society of America Bulletin, 79(3), 391-393. https://doi.org/10.1130/0016-7606(1968)79[391:MGPALS]2.0.CO;2 | es_ES |
dc.description.references | Kain, C.L., Rigby, E.H., Mazengarb, C. 2018. A combined morphometric, sedimentary, GIS and modelling analysis of flooding and debris flow hazard on a composite alluvial fan, Caveside, Tasmania. Sedimentary Geology, 364, 286-301. https://doi.org/10.1016/j.sedgeo.2017.10.005 | es_ES |
dc.description.references | Kienholz, H., Krummenacher, B., Kipfer, A., Perret, S. 2004. Aspects of integral risk management in practice: Considerations with respect to mountain hazards in Switzerland. Osterreichische Wasser- Und Abfallwirtschaft, 56(3-4), 43-50. | es_ES |
dc.description.references | Mao, L., Ravazzolo, D., Bertoldi, W. 2020. The role of vegetation and large wood on the topographic characteristics of braided river systems. Geomorphology, 367, 107299, https://doi.org/10.1016/j.geomorph.2020.107299 | es_ES |
dc.description.references | Mazzorana, B., Fuchs, S. 2010. A conceptual planning tool for hazard and risk management. In: Chen SC (Ed.), Internationales Symposion Interpraevent in the Pacific Rim, Klagenfurt: Internationale Forschungsgesellschaft Interpraevent:, 828-837. | es_ES |
dc.description.references | Mazzorana, B., Iribarren, P., Oyarzun, C., et al. 2017. Determining patterns of flood hazard exposure on an experimental alluvial fan. Proceedings XX Congreso Geológico Argentino, Tucumán (7th-11th august), Technical (p. session 3: 24-28). | es_ES |
dc.description.references | Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T., Mao, L., Iroumé, A.,Valdebenito, G. 2018. Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 11(2), 207-222. https://doi.org/10.1111/jfr3.12316 | es_ES |
dc.description.references | Mazzorana, B, Levaggi, L., Keiler, M., Fuchs, S. 2012. Towards dynamics in flood risk assessment, 3571-3587. https://doi.org/10.5194/nhess-12-3571-2012 | es_ES |
dc.description.references | Mazzorana, Bruno, Ghiandoni, E., Picco, L. 2020. How do stream processes affect hazard exposure on alluvial fans? Insights from an experimental study. Journal of Mountain Science, 17(4), 753-772. https://doi.org/10.1007/s11629-019-5788-x | es_ES |
dc.description.references | Muto, T., Steel, R.J., Swenson, J.B. 2007. Autostratigraphy: A framework norm for genetic stratigraphy. Journal of Sedimentary Research, 77(1-2), 2-12. https://doi.org/10.2110/jsr.2007.005 | es_ES |
dc.description.references | Paola, C., Straub, K., Mohrig, D., Reinhardt, L. 2009. Earth-Science Reviews The " unreasonable effectiveness " of stratigraphic and geomorphic experiments. Earth Science Reviews, 97(1-4), 1-43. https://doi.org/10.1016/j.earscirev.2009.05.003 | es_ES |
dc.description.references | Papathoma-Köhle, M., Gems, B., Sturm, M., Fuchs, S. 2017. Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth-Science Reviews, 171(November 2016), 272-288. https://doi.org/10.1016/j.earscirev.2017.06.007 | es_ES |
dc.description.references | Peakall, J., Ashworth, P., Best, J. 1996. Physical modelling in fluvial geomorphology: principles, applications and unresolved issues. In: Rhoads, B.L., Thorn, C.E. (Eds.), The scientific nature of geomorphology. JohnWiley & Sons, Chichester, pp. 221-253. | es_ES |
dc.description.references | Pelletier, J.D., Mayer, L., Pearthree, P.A., House, P.K., Demsey, K.A., Klawon, J.K., Vincent, K.R. 2005. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing. Bulletin of the Geological Society of America, 117(9-10), 1167-1180. https://doi.org/10.1130/B25544.1 | es_ES |
dc.description.references | Reitz, M.D., Jerolmack, D.J. 2012. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. Journal of Geophysical Research: Earth Surface, 117(2), 1-19. https://doi.org/10.1029/2011JF002261 | es_ES |
dc.description.references | Reitz, M.D., Jerolmack, D.J., Swenson, J.B. 2010. Flooding and flow path selection on alluvial fans and deltas, 37, 1-5. https://doi.org/10.1029/2009GL041985 | es_ES |
dc.description.references | Rosatti, G., Fraccarollo, L. 2006. A well-balanced approach for flows over mobile-bed with high sediment-transport. Journal of Computational Physics, 220(1), 312-338. https://doi.org/10.1016/j.jcp.2006.05.012 | es_ES |
dc.description.references | Rosatti, Giorgio, Begnudelli, L. 2013. Two-dimensional simulation of debris flows over mobile bed: Enhancing the TRENT2D model by using a well-balanced Generalized Roe-type solver. Computers and Fluids, 71, 179-195. https://doi.org/10.1016/j.compfluid.2012.10.006 | es_ES |
dc.description.references | Röthlisberger, V., Zischg, A.P., Keiler, M. 2017. Identifying spatial clusters of flood exposure to support decision making in risk management. Science of the Total Environment, 598, 593-603. https://doi.org/10.1016/j.scitotenv.2017.03.216 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694-1709. https://doi.org/10.1002/esp.4603 | es_ES |
dc.description.references | Santangelo, N., Santo, A., Di Crescenzo, G., Foscari, G., Liuzza, V., Sciarrotta, S., Scorpio, V. 2011. Flood susceptibility assessment in a highly urbanized alluvial fan: The case study of Sala Consilina (southern Italy). Natural Hazards and Earth System Science, 11(10), 2765-2780. https://doi.org/10.5194/nhess-11-2765-2011 | es_ES |
dc.description.references | Sheets, B.A., Hickson, T.A., Paola, C. 2002. Assembling the stratigraphic record: depositional patterns and time-scales in an experimental alluvial basin, Basin Research, 14(3), 287-301. https://doi.org/10.1046/j.1365-2117.2002.00185.x | es_ES |
dc.description.references | Sturm, M., Gems, B., Keller, F., Mazzorana, B., Fuchs, S., Papathoma-Köhle, M., Aufleger, M. 2018a. Experimental analyses of impact forces on buildings exposed to fluvial hazards. Journal of Hydrology, 565(March), 1-13. https://doi.org/10.1016/j.jhydrol.2018.07.070 | es_ES |
dc.description.references | Sturm, M., Gems, B., Keller, F., Mazzorana, B., Fuchs, S., Papathoma-Köhle, M., Aufleger, M. 2018b. Understanding impact dynamics on buildings caused by fluviatile sediment transport. Geomorphology, 321, 45-59. https://doi.org/10.1016/j.geomorph.2018.08.016 | es_ES |
dc.description.references | Van Dijk, M., Kleinhans, M.G., Postma, G., Kraal, E. 2012. Contrasting morphodynamics in alluvial fans and fan deltas: Effect of the downstream boundary. Sedimentology, 59(7), 2125-2145. https://doi.org/10.1111/j.1365-3091.2012.01337.x | es_ES |
dc.description.references | Whipple, K.X., Parker, G., Paola, C., Mohrig, D. 1998. Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study. Journal of Geology, 106(6), 677-693. https://doi.org/10.1086/516053 | es_ES |