- -

Dinámica distributiva de flujos bifásicos con carga de madera en un abanico aluvial experimental

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dinámica distributiva de flujos bifásicos con carga de madera en un abanico aluvial experimental

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santibañez, N. es_ES
dc.contributor.author Mazzorana, B. es_ES
dc.contributor.author Iribarren, P. es_ES
dc.contributor.author Mao, L. es_ES
dc.contributor.author Rojas, I. es_ES
dc.date.accessioned 2021-04-30T11:49:59Z
dc.date.available 2021-04-30T11:49:59Z
dc.date.issued 2021-04-30
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/165815
dc.description.abstract [EN] Alluvial fans are episodically affected by the distributary dynamics caused by extreme biphasic flow processes. The solid-fraction component of biphasic flows is generally represented by inorganic sediment, but these events may also carry significant amounts of large wood. The aim of the study was to assess on a physical alluvial fan model the randomness of morphodynamical processes and exposure associated to a set of specific loading conditions and at exploring how these patterns change if large wood is added to the biphasic mixture in a fixed proportion of the solid fraction. The experiments were conducted varying systematically the total volume, the sediment fraction of the biphasic mixture and the applied stream power. Two sets of experiments were run, either with and without a fixed proportion of the solid fraction constituted by large wood. Our results confirm that the exposure associated to specific loading conditions exhibits a remarkable randomness, that the applied stream power has a decisive effect on the variability of exposure and that the fixed portion of large wood strongly interfere with the distributary dynamics on alluvial fans. es_ES
dc.description.abstract [ES] Los abanicos aluviales se ven afectados episódicamente por la dinámica distributiva generada por procesos de flujo bifásico extremos. El sedimento inorgánico no es el único componente de la fracción sólida de los flujos bifásicos; también hay que considerar la carga de madera de gran tamaño. Siguiendo un enfoque experimental, el objetivo fue evaluar, en un modelo físico, la aleatoriedad de la morfodinámica y de la exposición asociadas a un conjunto de condiciones de carga específicas. Se exploró, además, cómo cambian estos patrones si se agrega madera de gran tamaño a la mezcla bifásica en una proporción fija de la fracción sólida. Variando sistemáticamente las condiciones de carga, se ejecutaron dos conjuntos de experimentos, uno con y otro sin una proporción fija de la fracción sólida constituida por madera de gran tamaño. Los resultados obtenidos confirman que los patrones de exposición asociados a una misma carga de sedimentos exhiben una notable aleatoriedad, que la potencia de la corriente aplicada ejerce un efecto decisivo en esos patrones y que la porción fija de madera de gran tamaño interfiere fuertemente con la dinámica distributiva de flujos bifásicos en abanicos aluviales. es_ES
dc.description.sponsorship El estudio fue desarrollado con el soporte de dos proyectos Fondecyt: (i) “The flood memory of a river system: using both experimental and field-based approaches to unravel the role of unsteady flow and antecedent flows on sediment dynamics during floods”. FONDECYT 1170657 (ANID) del investigator principal Luca Mao y (ii) “Unravelling the dynamics and impacts of sediment-laden flows in urban areas in southern Chile as a basis for innovative adaptation (SEDIMPACT)” FONDECYT 1200091 (ANID) del investigator principal Bruno Mazzorana es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Alluvial fan es_ES
dc.subject Experimental model es_ES
dc.subject Biphasic flows es_ES
dc.subject Distributive dynamics es_ES
dc.subject Large wood (LW) es_ES
dc.subject Abanico aluvial es_ES
dc.subject Modelo experimental es_ES
dc.subject Flujos bifásicos es_ES
dc.subject Dinámica distributiva es_ES
dc.subject Madera de gran tamaño (LW) es_ES
dc.title Dinámica distributiva de flujos bifásicos con carga de madera en un abanico aluvial experimental es_ES
dc.title.alternative Distributary behavior of biphasic flows with wood load on an experimental alluvial fan es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2021.14703
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//1170657/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//1200091/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Santibañez, N.; Mazzorana, B.; Iribarren, P.; Mao, L.; Rojas, I. (2021). Dinámica distributiva de flujos bifásicos con carga de madera en un abanico aluvial experimental. Ingeniería del agua. 25(2):145-168. https://doi.org/10.4995/ia.2021.14703 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2021.14703 es_ES
dc.description.upvformatpinicio 145 es_ES
dc.description.upvformatpfin 168 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\14703 es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.description.references Anstey, R.L. 1965. Physical characteristics of alluvial fans. Natick, MA: Army Natick Laboratory, Technical Report, ES-20. es_ES
dc.description.references Antronico, L., Greco, R., Robustelli, G., Sorriso-Valvo, M. 2015. Short-term evolution of an active basin-fan system, Aspromonte, south Italy. Geomorphology, 228, 536-551. https://doi.org/10.1016/j.geomorph.2014.10.013 es_ES
dc.description.references Barenblatt, G.I. (2003). Scaling. Cambridge University Press, Cambridge. 171 pp. es_ES
dc.description.references Blair, T.C. 2003. Features and origin of the giant Cucomungo Canyon alluvial fan, Eureka Valley, California. Special Paper of the Geological Society of America, 370, 105-126. https://doi.org/10.1130/0-8137-2370-1.105 es_ES
dc.description.references Blair, T.C., McPherson, J.G. 2009. Processes and Forms of Alluvial Fans. In: Parsons A.J., Abrahams A.D. (eds) Geomorphology of Desert Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5719-9_14 es_ES
dc.description.references Bryant, M., Falk, P., Paola, C. 1995. Experimental study of avulsion frequency and rate of deposition. Geology, 23(4), 365-368. https://doi.org/10.1130/0091-7613(1995)023%3C0365:ESOAFA%3E2.3.CO;2 es_ES
dc.description.references Chow, V.T. 1994. Hidráulica de canales abiertos. McGraw-Hill Interamericana S.A. Santafé de Bogotá, Colombia. es_ES
dc.description.references Clarke, L.E. 2015. Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 244, 135-145. https://doi.org/10.1016/j.geomorph.2015.04.013 es_ES
dc.description.references Clarke, L., Quine, T.A., Nicholas, A. 2010. An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 115(3-4), 278-285. https://doi.org/10.1016/j.geomorph.2009.06.033 es_ES
dc.description.references D'Agostino, V., Cesca, M., Marchi, L. 2010. Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology, 115(3-4), 294-304. https://doi.org/10.1016/j.geomorph.2009.06.032 es_ES
dc.description.references Davies, T.R., McSaveney, M.J., Clarkson, P.J. 2003. Anthropic aggradation of the Waiho River, Westland, New Zealand: Microscale modelling. Earth Surface Processes and Landforms, 28(2), 209-218. https://doi.org/10.1002/esp.449 es_ES
dc.description.references De Haas, T., Densmore, A.L., Stoffel, M., Suwa, H., Imaizumi, F., Ballesteros-Cánovas, J.A., Wasklewicz, T. 2018. Avulsions and the spatio-temporal evolution of debris-flow fans. Earth-Science Reviews, 177, 53-75. https://doi.org/10.1016/j.earscirev.2017.11.007 es_ES
dc.description.references Fuchs, S., Keiler, M., Zischg, A. 2015. A spatiotemporal multi-hazard exposure assessment based on property data. Natural Hazards and Earth System Sciences, 15(9), 2127-2142. https://doi.org/10.5194/nhess-15-2127-2015 es_ES
dc.description.references Fuchs, S. 2009. Susceptibility versus resilience to mountain hazards in Austria - Paradigms of vulnerability revisited. Natural Hazards and Earth System Science, 9(2), 337-352. https://doi.org/10.5194/nhess-9-337-2009 es_ES
dc.description.references Fuchs, S., Karagiorgos, K., Kitikidou, K., Maris, F., Paparrizos, S., Thaler, T. 2017a. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrology and Earth System Sciences, 21(6), 3183-3198. https://doi.org/10.5194/hess-21-3183-2017 es_ES
dc.description.references Fuchs, S., Röthlisberger, V., Thaler, T., Zischg, A., Keiler, M. 2017b. Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps. Annals of the American Association of Geographers, 107(2), 382-392. https://doi.org/10.1080/24694452.2016.1235494 es_ES
dc.description.references Gschnitzer, T., Gems, B., Mazzorana, B., Aufleger, M. 2017. Towards a robust assessment of bridge clogging processes in flood risk management. Geomorphology, 279, 128-140. https://doi.org/10.1016/j.geomorph.2016.11.002 es_ES
dc.description.references Guerit, L., Devauchelle, O., Lajeunesse, E., Barrier, L. 2014. Laboratory alluvial fans in one dimension. Physical Review E, 90(2), 1-7. https://doi.org/10.1103/PhysRevE.90.022203 es_ES
dc.description.references Hooke, R.L. 1968. Model geology: Prototype and laboratory streams: Discussion. Geological Society of America Bulletin, 79(3), 391-393. https://doi.org/10.1130/0016-7606(1968)79[391:MGPALS]2.0.CO;2 es_ES
dc.description.references Kain, C.L., Rigby, E.H., Mazengarb, C. 2018. A combined morphometric, sedimentary, GIS and modelling analysis of flooding and debris flow hazard on a composite alluvial fan, Caveside, Tasmania. Sedimentary Geology, 364, 286-301. https://doi.org/10.1016/j.sedgeo.2017.10.005 es_ES
dc.description.references Kienholz, H., Krummenacher, B., Kipfer, A., Perret, S. 2004. Aspects of integral risk management in practice: Considerations with respect to mountain hazards in Switzerland. Osterreichische Wasser- Und Abfallwirtschaft, 56(3-4), 43-50. es_ES
dc.description.references Mao, L., Ravazzolo, D., Bertoldi, W. 2020. The role of vegetation and large wood on the topographic characteristics of braided river systems. Geomorphology, 367, 107299, https://doi.org/10.1016/j.geomorph.2020.107299 es_ES
dc.description.references Mazzorana, B., Fuchs, S. 2010. A conceptual planning tool for hazard and risk management. In: Chen SC (Ed.), Internationales Symposion Interpraevent in the Pacific Rim, Klagenfurt: Internationale Forschungsgesellschaft Interpraevent:, 828-837. es_ES
dc.description.references Mazzorana, B., Iribarren, P., Oyarzun, C., et al. 2017. Determining patterns of flood hazard exposure on an experimental alluvial fan. Proceedings XX Congreso Geológico Argentino, Tucumán (7th-11th august), Technical (p. session 3: 24-28). es_ES
dc.description.references Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T., Mao, L., Iroumé, A.,Valdebenito, G. 2018. Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 11(2), 207-222. https://doi.org/10.1111/jfr3.12316 es_ES
dc.description.references Mazzorana, B, Levaggi, L., Keiler, M., Fuchs, S. 2012. Towards dynamics in flood risk assessment, 3571-3587. https://doi.org/10.5194/nhess-12-3571-2012 es_ES
dc.description.references Mazzorana, Bruno, Ghiandoni, E., Picco, L. 2020. How do stream processes affect hazard exposure on alluvial fans? Insights from an experimental study. Journal of Mountain Science, 17(4), 753-772. https://doi.org/10.1007/s11629-019-5788-x es_ES
dc.description.references Muto, T., Steel, R.J., Swenson, J.B. 2007. Autostratigraphy: A framework norm for genetic stratigraphy. Journal of Sedimentary Research, 77(1-2), 2-12. https://doi.org/10.2110/jsr.2007.005 es_ES
dc.description.references Paola, C., Straub, K., Mohrig, D., Reinhardt, L. 2009. Earth-Science Reviews The " unreasonable effectiveness " of stratigraphic and geomorphic experiments. Earth Science Reviews, 97(1-4), 1-43. https://doi.org/10.1016/j.earscirev.2009.05.003 es_ES
dc.description.references Papathoma-Köhle, M., Gems, B., Sturm, M., Fuchs, S. 2017. Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth-Science Reviews, 171(November 2016), 272-288. https://doi.org/10.1016/j.earscirev.2017.06.007 es_ES
dc.description.references Peakall, J., Ashworth, P., Best, J. 1996. Physical modelling in fluvial geomorphology: principles, applications and unresolved issues. In: Rhoads, B.L., Thorn, C.E. (Eds.), The scientific nature of geomorphology. JohnWiley & Sons, Chichester, pp. 221-253. es_ES
dc.description.references Pelletier, J.D., Mayer, L., Pearthree, P.A., House, P.K., Demsey, K.A., Klawon, J.K., Vincent, K.R. 2005. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing. Bulletin of the Geological Society of America, 117(9-10), 1167-1180. https://doi.org/10.1130/B25544.1 es_ES
dc.description.references Reitz, M.D., Jerolmack, D.J. 2012. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. Journal of Geophysical Research: Earth Surface, 117(2), 1-19. https://doi.org/10.1029/2011JF002261 es_ES
dc.description.references Reitz, M.D., Jerolmack, D.J., Swenson, J.B. 2010. Flooding and flow path selection on alluvial fans and deltas, 37, 1-5. https://doi.org/10.1029/2009GL041985 es_ES
dc.description.references Rosatti, G., Fraccarollo, L. 2006. A well-balanced approach for flows over mobile-bed with high sediment-transport. Journal of Computational Physics, 220(1), 312-338. https://doi.org/10.1016/j.jcp.2006.05.012 es_ES
dc.description.references Rosatti, Giorgio, Begnudelli, L. 2013. Two-dimensional simulation of debris flows over mobile bed: Enhancing the TRENT2D model by using a well-balanced Generalized Roe-type solver. Computers and Fluids, 71, 179-195. https://doi.org/10.1016/j.compfluid.2012.10.006 es_ES
dc.description.references Röthlisberger, V., Zischg, A.P., Keiler, M. 2017. Identifying spatial clusters of flood exposure to support decision making in risk management. Science of the Total Environment, 598, 593-603. https://doi.org/10.1016/j.scitotenv.2017.03.216 es_ES
dc.description.references Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694-1709. https://doi.org/10.1002/esp.4603 es_ES
dc.description.references Santangelo, N., Santo, A., Di Crescenzo, G., Foscari, G., Liuzza, V., Sciarrotta, S., Scorpio, V. 2011. Flood susceptibility assessment in a highly urbanized alluvial fan: The case study of Sala Consilina (southern Italy). Natural Hazards and Earth System Science, 11(10), 2765-2780. https://doi.org/10.5194/nhess-11-2765-2011 es_ES
dc.description.references Sheets, B.A., Hickson, T.A., Paola, C. 2002. Assembling the stratigraphic record: depositional patterns and time-scales in an experimental alluvial basin, Basin Research, 14(3), 287-301. https://doi.org/10.1046/j.1365-2117.2002.00185.x es_ES
dc.description.references Sturm, M., Gems, B., Keller, F., Mazzorana, B., Fuchs, S., Papathoma-Köhle, M., Aufleger, M. 2018a. Experimental analyses of impact forces on buildings exposed to fluvial hazards. Journal of Hydrology, 565(March), 1-13. https://doi.org/10.1016/j.jhydrol.2018.07.070 es_ES
dc.description.references Sturm, M., Gems, B., Keller, F., Mazzorana, B., Fuchs, S., Papathoma-Köhle, M., Aufleger, M. 2018b. Understanding impact dynamics on buildings caused by fluviatile sediment transport. Geomorphology, 321, 45-59. https://doi.org/10.1016/j.geomorph.2018.08.016 es_ES
dc.description.references Van Dijk, M., Kleinhans, M.G., Postma, G., Kraal, E. 2012. Contrasting morphodynamics in alluvial fans and fan deltas: Effect of the downstream boundary. Sedimentology, 59(7), 2125-2145. https://doi.org/10.1111/j.1365-3091.2012.01337.x es_ES
dc.description.references Whipple, K.X., Parker, G., Paola, C., Mohrig, D. 1998. Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study. Journal of Geology, 106(6), 677-693. https://doi.org/10.1086/516053 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem