- -

Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and alpha-s1-casein abundance in bovine mammary epithelial cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and alpha-s1-casein abundance in bovine mammary epithelial cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hu, Liangyu es_ES
dc.contributor.author Chen, Yifei es_ES
dc.contributor.author Cortes, Ismael M. es_ES
dc.contributor.author Coleman, Danielle N. es_ES
dc.contributor.author Dai, Hongyu es_ES
dc.contributor.author Liang, Yusheng es_ES
dc.contributor.author Parys, Claudia es_ES
dc.contributor.author Fernández Martínez, Carlos Javier es_ES
dc.contributor.author Wang, Mengzhi es_ES
dc.contributor.author Loor, Juan J. es_ES
dc.date.accessioned 2021-05-05T03:31:54Z
dc.date.available 2021-05-05T03:31:54Z
dc.date.issued 2020-01-01 es_ES
dc.identifier.issn 2042-6496 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165956
dc.description.abstract [EN] Methionine (Met) and arginine (Arg) regulate casein protein abundance through alterations in activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. A potential role for the circadian clock network on the regulation of protein synthesis, partly via activity of mTORC1, has been highlighted in non-ruminants. The main objective of the study was to determine in ruminant mammary cells alterations in mRNA, protein abundance and phosphorylation status of mTORC1-related upstream targets, circadian clock proteins, and protein kinase AMP-activated catalytic subunit alpha (AMPK) in relation to alpha-s1-casein protein (CSN1S1) abundance in response to greater supply of Met and Arg alone or in combination. Primary bovine mammary epithelial cells (BMEC) were incubated for 12 h in a 2 x 2 arrangement of treatments with control media (ideal profile of amino acids, IPAA), or media supplemented with increased Met (incMet), Arg (incArg), or both (incMet + incArg). Data were analyzed testing the main effects of Met and Arg and their interaction. Among 7 amino acid (AA) transporters known to be mTORC1 targets, increasing supply of Arg downregulated SLC1A5, SLC3A2, SLC7A1, and SLC7A5, while increasing supply of Met upregulated SLC7A1. mRNA abundance of the cytosolic Arg sensor (CASTOR1) was lower when supply of Arg and Met alone increased. p-TSC2 (TSC complex subunit 2) was greater when the Arg supply was increased, while the phosphoralation ratio of p-AKT (AKT serine/threonine kinase 1):total (t) AKT and p-AMPK:tAMPK were lower. In spite of this, the ratio of p-mTOR:tmTOR nearly doubled with incArg but such response did not prevent a decrease in CSN1S1 abundance. The abundance of period circadian regulator 1 (PER1) protein nearly doubled with all treatments, but only incMet + incArg led to greater clock circadian regulator (CLOCK) protein abundance. Overall, data suggest that a greater supply of Met and Arg could influence CSN1S1 synthesis of BMEC through changes in the mTORC1, circadian clock, and AMPK pathways. Identifying mechanistic relationships between intracellular energy, total AA supply, and these pathways in the context of milk protein synthesis in ruminants merits further research. es_ES
dc.description.sponsorship L. Hu was recipient of a 2017 Yangzhou University International Academic Exchange award and a Postgraduate Research & Practice Innovation Program of Jiangsu Province (CX137) to train at University of Illinois. L. Hu and M. Wang were supported by project from Natural Science Foundation of China (31672446). H. Dai and Y. Liang received scholarships from China Scholarship Council (Beijing, China) to undertake PhD training at University of Illinois. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Food & Function es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and alpha-s1-casein abundance in bovine mammary epithelial cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9fo02379h es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//31672446/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JSU//CX137/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Hu, L.; Chen, Y.; Cortes, IM.; Coleman, DN.; Dai, H.; Liang, Y.; Parys, C.... (2020). Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and alpha-s1-casein abundance in bovine mammary epithelial cells. Food & Function. 11(1):883-894. https://doi.org/10.1039/c9fo02379h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9fo02379h es_ES
dc.description.upvformatpinicio 883 es_ES
dc.description.upvformatpfin 894 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 31942894 es_ES
dc.relation.pasarela S\410742 es_ES
dc.contributor.funder Jiangsu University es_ES
dc.contributor.funder Yangzhou University es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Rius, A. G., Appuhamy, J. A. D. R. N., Cyriac, J., Kirovski, D., Becvar, O., Escobar, J., … Hanigan, M. D. (2010). Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. Journal of Dairy Science, 93(7), 3114-3127. doi:10.3168/jds.2009-2743 es_ES
dc.description.references Moshel, Y., Rhoads, R. E., & Barash, I. (2006). Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. Journal of Cellular Biochemistry, 98(3), 685-700. doi:10.1002/jcb.20825 es_ES
dc.description.references Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., … Murphy, L. O. (2009). Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 136(3), 521-534. doi:10.1016/j.cell.2008.11.044 es_ES
dc.description.references Appuhamy, J. A. D. R. N., Nayananjalie, W. A., England, E. M., Gerrard, D. E., Akers, R. M., & Hanigan, M. D. (2014). Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells. Journal of Dairy Science, 97(1), 419-429. doi:10.3168/jds.2013-7189 es_ES
dc.description.references HANIGAN, M. D., CROMPTON, L. A., BEQUETTE, B. J., MILLS, J. A. N., & FRANCE, J. (2002). Modelling Mammary Metabolism in the Dairy Cow to Predict Milk Constituent Yield, with Emphasis on Amino Acid Metabolism and Milk Protein Production: Model Evaluation. Journal of Theoretical Biology, 217(3), 311-330. doi:10.1006/jtbi.2002.3037 es_ES
dc.description.references Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2013). Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. Journal of Dairy Science, 96(10), 6248-6263. doi:10.3168/jds.2012-5790 es_ES
dc.description.references Weekes, T. L., Luimes, P. H., & Cant, J. P. (2006). Responses to Amino Acid Imbalances and Deficiencies in Lactating Dairy Cows. Journal of Dairy Science, 89(6), 2177-2187. doi:10.3168/jds.s0022-0302(06)72288-3 es_ES
dc.description.references Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Marc Rhoads, J., … Yin, Y. (2008). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153-168. doi:10.1007/s00726-008-0210-y es_ES
dc.description.references Mepham, T. B. (1982). Amino Acid Utilization by Lactating Mammary Gland. Journal of Dairy Science, 65(2), 287-298. doi:10.3168/jds.s0022-0302(82)82191-7 es_ES
dc.description.references Haque, M. N., Rulquin, H., Andrade, A., Faverdin, P., Peyraud, J. L., & Lemosquet, S. (2012). Milk protein synthesis in response to the provision of an «ideal» amino acid profile at 2 levels of metabolizable protein supply in dairy cows. Journal of Dairy Science, 95(10), 5876-5887. doi:10.3168/jds.2011-5230 es_ES
dc.description.references H. Rulquin , G.Raggio , H.Lapierre and S.Lemosquet , Energy and Protein Metabolism and Nutrition , Wageningen Academic Publishers , Wageningen , 2007 es_ES
dc.description.references Nan, X., Bu, D., Li, X., Wang, J., Wei, H., Hu, H., … Loor, J. J. (2014). Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phosphorylation in bovine mammary cells. Physiological Genomics, 46(7), 268-275. doi:10.1152/physiolgenomics.00119.2013 es_ES
dc.description.references Fraser, D. L., Ørskov, E. R., Whitelaw, F. G., & Franklin, M. F. (1991). Limiting amino acids in dairy cows given casein as the sole source of protein. Livestock Production Science, 28(3), 235-252. doi:10.1016/0301-6226(91)90145-g es_ES
dc.description.references Doepel, L., Pacheco, D., Kennelly, J. J., Hanigan, M. D., López, I. F., & Lapierre, H. (2004). Milk Protein Synthesis as a Function of Amino Acid Supply. Journal of Dairy Science, 87(5), 1279-1297. doi:10.3168/jds.s0022-0302(04)73278-6 es_ES
dc.description.references Haque, M. N., Rulquin, H., & Lemosquet, S. (2013). Milk protein responses in dairy cows to changes in postruminal supplies of arginine, isoleucine, and valine. Journal of Dairy Science, 96(1), 420-430. doi:10.3168/jds.2012-5610 es_ES
dc.description.references Salama, A. A. K., Duque, M., Wang, L., Shahzad, K., Olivera, M., & Loor, J. J. (2019). Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. Journal of Dairy Science, 102(3), 2469-2480. doi:10.3168/jds.2018-15219 es_ES
dc.description.references Dong, X., Zhou, Z., Saremi, B., Helmbrecht, A., Wang, Z., & Loor, J. J. (2018). Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. Journal of Dairy Science, 101(2), 1708-1718. doi:10.3168/jds.2017-13351 es_ES
dc.description.references Deng, L., Jiang, C., Chen, L., Jin, J., Wei, J., Zhao, L., … Wang, P. (2015). The Ubiquitination of RagA GTPase by RNF152 Negatively Regulates mTORC1 Activation. Molecular Cell, 58(5), 804-818. doi:10.1016/j.molcel.2015.03.033 es_ES
dc.description.references Carroll, B., Maetzel, D., Maddocks, O. D., Otten, G., Ratcliff, M., Smith, G. R., … Korolchuk, V. I. (2016). Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. eLife, 5. doi:10.7554/elife.11058 es_ES
dc.description.references Wolfson, R. L., & Sabatini, D. M. (2017). The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metabolism, 26(2), 301-309. doi:10.1016/j.cmet.2017.07.001 es_ES
dc.description.references Wang, S., Tsun, Z.-Y., Wolfson, R. L., Shen, K., Wyant, G. A., Plovanich, M. E., … Sabatini, D. M. (2015). Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 347(6218), 188-194. doi:10.1126/science.1257132 es_ES
dc.description.references Wolfson, R. L., Chantranupong, L., Saxton, R. A., Shen, K., Scaria, S. M., Cantor, J. R., & Sabatini, D. M. (2016). Sestrin2 is a leucine sensor for the mTORC1 pathway. Science, 351(6268), 43-48. doi:10.1126/science.aab2674 es_ES
dc.description.references Casey, T. M., Crodian, J., Erickson, E., Kuropatwinski, K. K., Gleiberman, A. S., & Antoch, M. P. (2014). Tissue-Specific Changes in Molecular Clocks During the Transition from Pregnancy to Lactation in Mice1. Biology of Reproduction, 90(6). doi:10.1095/biolreprod.113.116137 es_ES
dc.description.references Lamia, K. A., Storch, K.-F., & Weitz, C. J. (2008). Physiological significance of a peripheral tissue circadian clock. Proceedings of the National Academy of Sciences, 105(39), 15172-15177. doi:10.1073/pnas.0806717105 es_ES
dc.description.references Cho, H., Zhao, X., Hatori, M., Yu, R. T., Barish, G. D., Lam, M. T., … Evans, R. M. (2012). Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature, 485(7396), 123-127. doi:10.1038/nature11048 es_ES
dc.description.references Vollmers, C., Schmitz, R. J., Nathanson, J., Yeo, G., Ecker, J. R., & Panda, S. (2012). Circadian Oscillations of Protein-Coding and Regulatory RNAs in a Highly Dynamic Mammalian Liver Epigenome. Cell Metabolism, 16(6), 833-845. doi:10.1016/j.cmet.2012.11.004 es_ES
dc.description.references Cao, R. (2018). mTOR Signaling, Translational Control, and the Circadian Clock. Frontiers in Genetics, 9. doi:10.3389/fgene.2018.00367 es_ES
dc.description.references Ramanathan, C., Kathale, N. D., Liu, D., Lee, C., Freeman, D. A., Hogenesch, J. B., … Liu, A. C. (2018). mTOR signaling regulates central and peripheral circadian clock function. PLOS Genetics, 14(5), e1007369. doi:10.1371/journal.pgen.1007369 es_ES
dc.description.references Salfer, I. J., Dechow, C. D., & Harvatine, K. J. (2019). Annual rhythms of milk and milk fat and protein production in dairy cattle in the United States. Journal of Dairy Science, 102(1), 742-753. doi:10.3168/jds.2018-15040 es_ES
dc.description.references Li, S., Hosseini, A., Danes, M., Jacometo, C., Liu, J., & Loor, J. J. (2016). Essential amino acid ratios and mTOR affect lipogenic gene networks and miRNA expression in bovine mammary epithelial cells. Journal of Animal Science and Biotechnology, 7(1). doi:10.1186/s40104-016-0104-x es_ES
dc.description.references Vailati-Riboni, M., Xu, T., Qadir, B., Bucktrout, R., Parys, C., & Loor, J. J. (2019). In vitro methionine supplementation during lipopolysaccharide stimulation modulates immunometabolic gene network expression in isolated polymorphonuclear cells from lactating Holstein cows. Journal of Dairy Science, 102(9), 8343-8351. doi:10.3168/jds.2018-15737 es_ES
dc.description.references Kadegowda, A. K. G., Bionaz, M., Piperova, L. S., Erdman, R. A., & Loor, J. J. (2009). Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science, 92(9), 4276-4289. doi:10.3168/jds.2008-1932 es_ES
dc.description.references Dong, X., Zhou, Z., Wang, L., Saremi, B., Helmbrecht, A., Wang, Z., & Loor, J. J. (2018). Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine:methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. Journal of Dairy Science, 101(6), 5502-5514. doi:10.3168/jds.2017-13707 es_ES
dc.description.references Bionaz, M., & Loor, J. J. (2011). Gene Networks Driving Bovine Mammary Protein Synthesis during the Lactation cycle. Bioinformatics and Biology Insights, 5, BBI.S7003. doi:10.4137/bbi.s7003 es_ES
dc.description.references Zhou, Z., Vailati-Riboni, M., Trevisi, E., Drackley, J. K., Luchini, D. N., & Loor, J. J. (2016). Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. Journal of Dairy Science, 99(11), 8716-8732. doi:10.3168/jds.2015-10525 es_ES
dc.description.references National Research Council , Nutrient Requirements of Dairy Cattle , National Academies Press , Washington , 2001 es_ES
dc.description.references Batistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689 es_ES
dc.description.references Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185 es_ES
dc.description.references Zhou, Z., Ferdous, F., Montagner, P., Luchini, D. N., Corrêa, M. N., & Loor, J. J. (2018). Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. Journal of Dairy Science, 101(11), 10374-10382. doi:10.3168/jds.2018-14972 es_ES
dc.description.references Vailati-Riboni, M., Zhou, Z., Jacometo, C. B., Minuti, A., Trevisi, E., Luchini, D. N., & Loor, J. J. (2017). Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. Journal of Dairy Science, 100(5), 3958-3968. doi:10.3168/jds.2016-11812 es_ES
dc.description.references Ma, Y. F., Batistel, F., Xu, T. L., Han, L. Q., Bucktrout, R., Liang, Y., … Loor, J. J. (2019). Phosphorylation of AKT serine/threonine kinase and abundance of milk protein synthesis gene networks in mammary tissue in response to supply of methionine in periparturient Holstein cows. Journal of Dairy Science, 102(5), 4264-4274. doi:10.3168/jds.2018-15451 es_ES
dc.description.references Reynolds, C. K., Harmon, D. L., & Cecava, M. J. (1994). Absorption and Delivery of Nutrients for Milk Protein Synthesis by Portal-Drained Viscera. Journal of Dairy Science, 77(9), 2787-2808. doi:10.3168/jds.s0022-0302(94)77220-9 es_ES
dc.description.references Bequette, B. J., Backwell, F. R. C., & Crompton, L. A. (1998). Current Concepts of Amino Acid and Protein Metabolism in the Mammary Gland of the Lactating Ruminant. Journal of Dairy Science, 81(9), 2540-2559. doi:10.3168/jds.s0022-0302(98)70147-x es_ES
dc.description.references Taylor, P. M. (2013). Role of amino acid transporters in amino acid sensing. The American Journal of Clinical Nutrition, 99(1), 223S-230S. doi:10.3945/ajcn.113.070086 es_ES
dc.description.references Dai, H., Coleman, D. N., Hu, L., Martinez-Cortés, I., Wang, M., Parys, C., … Loor, J. J. (2020). Methionine and arginine supplementation alter inflammatory and oxidative stress responses during lipopolysaccharide challenge in bovine mammary epithelial cells in vitro. Journal of Dairy Science, 103(1), 676-689. doi:10.3168/jds.2019-16631 es_ES
dc.description.references Hatzoglou, M., Fernandez, J., Yaman, I., & Closs, E. (2004). REGULATION OF CATIONIC AMINO ACID TRANSPORT: The Story of the CAT-1 Transporter. Annual Review of Nutrition, 24(1), 377-399. doi:10.1146/annurev.nutr.23.011702.073120 es_ES
dc.description.references Fuchs, B. C., & Bode, B. P. (2005). Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Seminars in Cancer Biology, 15(4), 254-266. doi:10.1016/j.semcancer.2005.04.005 es_ES
dc.description.references Zheng, L., Zhang, W., Zhou, Y., Li, F., Wei, H., & Peng, J. (2016). Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1. International Journal of Molecular Sciences, 17(10), 1636. doi:10.3390/ijms17101636 es_ES
dc.description.references Suryawan, A. (2011). Regulation of protein synthesis by amino acids in muscle of neonates. Frontiers in Bioscience, 16(1), 1445. doi:10.2741/3798 es_ES
dc.description.references Averous, J., Lambert-Langlais, S., Mesclon, F., Carraro, V., Parry, L., Jousse, C., … Fafournoux, P. (2016). GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Scientific Reports, 6(1). doi:10.1038/srep27698 es_ES
dc.description.references Xia, J., Wang, R., Zhang, T., & Ding, J. (2016). Structural insight into the arginine-binding specificity of CASTOR1 in amino acid-dependent mTORC1 signaling. Cell Discovery, 2(1). doi:10.1038/celldisc.2016.35 es_ES
dc.description.references Chantranupong, L., Scaria, S. M., Saxton, R. A., Gygi, M. P., Shen, K., Wyant, G. A., … Sabatini, D. M. (2016). The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell, 165(1), 153-164. doi:10.1016/j.cell.2016.02.035 es_ES
dc.description.references Cai, W., Wei, Y., Jarnik, M., Reich, J., & Lilly, M. A. (2016). The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function. PLOS Genetics, 12(5), e1006036. doi:10.1371/journal.pgen.1006036 es_ES
dc.description.references Shen, K., Huang, R. K., Brignole, E. J., Condon, K. J., Valenstein, M. L., Chantranupong, L., … Sabatini, D. M. (2018). Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature, 556(7699), 64-69. doi:10.1038/nature26158 es_ES
dc.description.references Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., & Sabatini, D. M. (2008). The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1. Science, 320(5882), 1496-1501. doi:10.1126/science.1157535 es_ES
dc.description.references Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U., & Sabatini, D. M. (2016). Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature, 536(7615), 229-233. doi:10.1038/nature19079 es_ES
dc.description.references Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., … Guan, K.-L. (2006). TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Cell, 126(5), 955-968. doi:10.1016/j.cell.2006.06.055 es_ES
dc.description.references Huang, J., & Manning, B. D. (2008). The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochemical Journal, 412(2), 179-190. doi:10.1042/bj20080281 es_ES
dc.description.references Menon, S., Dibble, C. C., Talbott, G., Hoxhaj, G., Valvezan, A. J., Takahashi, H., … Manning, B. D. (2014). Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome. Cell, 156(4), 771-785. doi:10.1016/j.cell.2013.11.049 es_ES
dc.description.references Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J., & Cantley, L. C. (2002). Identification of the Tuberous Sclerosis Complex-2 Tumor Suppressor Gene Product Tuberin as a Target of the Phosphoinositide 3-Kinase/Akt Pathway. Molecular Cell, 10(1), 151-162. doi:10.1016/s1097-2765(02)00568-3 es_ES
dc.description.references Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1(1), 15-25. doi:10.1016/j.cmet.2004.12.003 es_ES
dc.description.references Inoki, K., Zhu, T., & Guan, K.-L. (2003). TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 115(5), 577-590. doi:10.1016/s0092-8674(03)00929-2 es_ES
dc.description.references Hindupur, S. K., González, A., & Hall, M. N. (2015). The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control. Cold Spring Harbor Perspectives in Biology, 7(8), a019141. doi:10.1101/cshperspect.a019141 es_ES
dc.description.references Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., & Pandolfi, P. P. (2005). Phosphorylation and Functional Inactivation of TSC2 by Erk. Cell, 121(2), 179-193. doi:10.1016/j.cell.2005.02.031 es_ES
dc.description.references ROLFE, M., McLEOD, L. E., PRATT, P. F., & PROUD, C. G. (2005). Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochemical Journal, 388(3), 973-984. doi:10.1042/bj20041888 es_ES
dc.description.references Yang, J.-X., Wang, C.-H., Xu, Q.-B., Zhao, F.-Q., Liu, J.-X., & Liu, H.-Y. (2015). Methionyl-Methionine Promotes α-s1 Casein Synthesis in Bovine Mammary Gland Explants by Enhancing Intracellular Substrate Availability and Activating JAK2-STAT5 and mTOR-Mediated Signaling Pathways. The Journal of Nutrition, 145(8), 1748-1753. doi:10.3945/jn.114.208330 es_ES
dc.description.references Ko, C. H., & Takahashi, J. S. (2006). Molecular components of the mammalian circadian clock. Human Molecular Genetics, 15(suppl_2), R271-R277. doi:10.1093/hmg/ddl207 es_ES
dc.description.references Yagita, K., Tamanini, F., van der Horst, G. T. J., & Okamura, H. (2001). Molecular Mechanisms of the Biological Clock in Cultured Fibroblasts. Science, 292(5515), 278-281. doi:10.1126/science.1059542 es_ES
dc.description.references Preitner, N., Damiola, F., Luis-Lopez-Molina, Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The Orphan Nuclear Receptor REV-ERBα Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator. Cell, 110(2), 251-260. doi:10.1016/s0092-8674(02)00825-5 es_ES
dc.description.references Reinke, H., & Asher, G. (2019). Crosstalk between metabolism and circadian clocks. Nature Reviews Molecular Cell Biology, 20(4), 227-241. doi:10.1038/s41580-018-0096-9 es_ES
dc.description.references Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., … Schibler, U. (2000). Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling. Science, 289(5488), 2344-2347. doi:10.1126/science.289.5488.2344 es_ES
dc.description.references Lamia, K. A., Sachdeva, U. M., DiTacchio, L., Williams, E. C., Alvarez, J. G., Egan, D. F., … Evans, R. M. (2009). AMPK Regulates the Circadian Clock by Cryptochrome Phosphorylation and Degradation. Science, 326(5951), 437-440. doi:10.1126/science.1172156 es_ES
dc.description.references Zheng, X., & Sehgal, A. (2010). AKT and TOR Signaling Set the Pace of the Circadian Pacemaker. Current Biology, 20(13), 1203-1208. doi:10.1016/j.cub.2010.05.027 es_ES
dc.description.references Ye, R., Selby, C. P., Chiou, Y.-Y., Ozkan-Dagliyan, I., Gaddameedhi, S., & Sancar, A. (2014). Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes & Development, 28(18), 1989-1998. doi:10.1101/gad.249417.114 es_ES
dc.description.references Luciano, A. K., Zhou, W., Santana, J. M., Kyriakides, C., Velazquez, H., & Sessa, W. C. (2018). CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues. Journal of Biological Chemistry, 293(23), 9126-9136. doi:10.1074/jbc.ra117.000773 es_ES
dc.description.references Dang, F., Sun, X., Ma, X., Wu, R., Zhang, D., Chen, Y., … Liu, Y. (2016). Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nature Communications, 7(1). doi:10.1038/ncomms12696 es_ES
dc.description.references McFadden, J. W., & Corl, B. A. (2009). Activation of AMP-activated protein kinase (AMPK) inhibits fatty acid synthesis in bovine mammary epithelial cells. Biochemical and Biophysical Research Communications, 390(3), 388-393. doi:10.1016/j.bbrc.2009.09.017 es_ES
dc.description.references Fulco, M., Cen, Y., Zhao, P., Hoffman, E. P., McBurney, M. W., Sauve, A. A., & Sartorelli, V. (2008). Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt. Developmental Cell, 14(5), 661-673. doi:10.1016/j.devcel.2008.02.004 es_ES
dc.description.references Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., … Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458(7241), 1056-1060. doi:10.1038/nature07813 es_ES
dc.description.references Costford, S. R., Bajpeyi, S., Pasarica, M., Albarado, D. C., Thomas, S. C., Xie, H., … Smith, S. R. (2010). Skeletal muscle NAMPT is induced by exercise in humans. American Journal of Physiology-Endocrinology and Metabolism, 298(1), E117-E126. doi:10.1152/ajpendo.00318.2009 es_ES
dc.description.references Hou, X., Xu, S., Maitland-Toolan, K. A., Sato, K., Jiang, B., Ido, Y., … Zang, M. (2008). SIRT1 Regulates Hepatocyte Lipid Metabolism through Activating AMP-activated Protein Kinase. Journal of Biological Chemistry, 283(29), 20015-20026. doi:10.1074/jbc.m802187200 es_ES
dc.description.references Lan, F., Cacicedo, J. M., Ruderman, N., & Ido, Y. (2008). SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1. Journal of Biological Chemistry, 283(41), 27628-27635. doi:10.1074/jbc.m805711200 es_ES
dc.description.references Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., … Schibler, U. (2008). SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. Cell, 134(2), 317-328. doi:10.1016/j.cell.2008.06.050 es_ES
dc.description.references Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., … Sassone-Corsi, P. (2008). The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control. Cell, 134(2), 329-340. doi:10.1016/j.cell.2008.07.002 es_ES
dc.description.references Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., & Sassone-Corsi, P. (2009). Circadian Control of the NAD + Salvage Pathway by CLOCK-SIRT1. Science, 324(5927), 654-657. doi:10.1126/science.1170803 es_ES
dc.description.references Ramsey, K. M., Yoshino, J., Brace, C. S., Abrassart, D., Kobayashi, Y., Marcheva, B., … Bass, J. (2009). Circadian Clock Feedback Cycle Through NAMPT-Mediated NAD + Biosynthesis. Science, 324(5927), 651-654. doi:10.1126/science.1171641 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem