- -

High Fibre Gluten-Free Fresh Pasta with Tiger Nut, Chickpea and Fenugreek: Technofunctional, Sensory and Nutritional Properties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

High Fibre Gluten-Free Fresh Pasta with Tiger Nut, Chickpea and Fenugreek: Technofunctional, Sensory and Nutritional Properties

Show full item record

Llavata-Cabrero, B.; Albors, A.; Martín-Esparza, M. (2020). High Fibre Gluten-Free Fresh Pasta with Tiger Nut, Chickpea and Fenugreek: Technofunctional, Sensory and Nutritional Properties. Foods. 9(1):1-15. https://doi.org/10.3390/foods9010011

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165961

Files in this item

Item Metadata

Title: High Fibre Gluten-Free Fresh Pasta with Tiger Nut, Chickpea and Fenugreek: Technofunctional, Sensory and Nutritional Properties
Author: Llavata-Cabrero, Beatriz Albors, A. Martín-Esparza, M.E.
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Abstract:
[EN] Gluten-free pasta production with a low glycaemic index and improved nutritional profile is still a challenge for the food industry. In this study, pasta was produced from fenugreek (FF), chickpea (CPF) and tiger nut ...[+]
Subjects: Coeliac disease , In-vitro starch digestibility , Legume flour , Tiger nut flour , Fibre , Galactomannans
Copyrigths: Reconocimiento (by)
Source:
Foods. (issn: 2304-8158 )
DOI: 10.3390/foods9010011
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/foods9010011
Type: Artículo

References

Lamacchia, C., Camarca, A., Picascia, S., Di Luccia, A., & Gianfrani, C. (2014). Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients. Nutrients, 6(2), 575-590. doi:10.3390/nu6020575

Capriles, V. D., dos Santos, F. G., & Arêas, J. A. G. (2016). Gluten-free breadmaking: Improving nutritional and bioactive compounds. Journal of Cereal Science, 67, 83-91. doi:10.1016/j.jcs.2015.08.005

Hager, A.-S., Wolter, A., Czerny, M., Bez, J., Zannini, E., Arendt, E. K., & Czerny, M. (2012). Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. European Food Research and Technology, 235(2), 333-344. doi:10.1007/s00217-012-1763-2 [+]
Lamacchia, C., Camarca, A., Picascia, S., Di Luccia, A., & Gianfrani, C. (2014). Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients. Nutrients, 6(2), 575-590. doi:10.3390/nu6020575

Capriles, V. D., dos Santos, F. G., & Arêas, J. A. G. (2016). Gluten-free breadmaking: Improving nutritional and bioactive compounds. Journal of Cereal Science, 67, 83-91. doi:10.1016/j.jcs.2015.08.005

Hager, A.-S., Wolter, A., Czerny, M., Bez, J., Zannini, E., Arendt, E. K., & Czerny, M. (2012). Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. European Food Research and Technology, 235(2), 333-344. doi:10.1007/s00217-012-1763-2

Miranda, J., Lasa, A., Bustamante, M. A., Churruca, I., & Simon, E. (2014). Nutritional Differences Between a Gluten-free Diet and a Diet Containing Equivalent Products with Gluten. Plant Foods for Human Nutrition, 69(2), 182-187. doi:10.1007/s11130-014-0410-4

Giuberti, G., Gallo, A., Cerioli, C., Fortunati, P., & Masoero, F. (2015). Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chemistry, 175, 43-49. doi:10.1016/j.foodchem.2014.11.127

Berti, C., Riso, P., Monti, L. D., & Porrini, M. (2004). In vitro starch digestibility and in vivo glucose response of gluten?free foods and their gluten counterparts. European Journal of Nutrition, 43(4). doi:10.1007/s00394-004-0459-1

Akirov, A. (2015). Co-occurrence of type 1 diabetes mellitus and celiac disease. World Journal of Diabetes, 6(5), 707. doi:10.4239/wjd.v6.i5.707

Brennan, C. S., & Tudorica, C. M. (2008). Evaluation of potential mechanisms by which dietary fibre additions reduce the predicted glycaemic index of fresh pastas. International Journal of Food Science & Technology, 43(12), 2151-2162. doi:10.1111/j.1365-2621.2008.01831.x

Wójtowicz, A., & Mościcki, L. (2014). Influence of legume type and addition level on quality characteristics, texture and microstructure of enriched precooked pasta. LWT - Food Science and Technology, 59(2), 1175-1185. doi:10.1016/j.lwt.2014.06.010

Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinumL.): a review. British Journal of Nutrition, 108(S1), S11-S26. doi:10.1017/s0007114512000797

Turco, I., Bacchetti, T., Morresi, C., Padalino, L., & Ferretti, G. (2019). Polyphenols and the glycaemic index of legume pasta. Food & Function, 10(9), 5931-5938. doi:10.1039/c9fo00696f

JYOTSNA, R., INDRANI, D., SAI MANOHAR, R., & VENKATESWARA RAO, G. (2010). EFFECT OF FENUGREEK (TRIGONELLA FOENUM GRAECUM L.) ON THE TEXTURAL CHARACTERISTICS AND MICROSTRUCTURE OF VERMICELLI FROM TRITICUM DURUM WHEAT SEMOLINA. Journal of Food Processing and Preservation, 35(3), 320-326. doi:10.1111/j.1745-4549.2009.00459.x

Shirani, G., & Ganesharanee, R. (2009). Extruded products with Fenugreek (Trigonella foenum-graecium) chickpea and rice: Physical properties, sensory acceptability and glycaemic index. Journal of Food Engineering, 90(1), 44-52. doi:10.1016/j.jfoodeng.2008.06.004

Sánchez-Zapata, E., Fernández-López, J., & Angel Pérez-Alvarez, J. (2012). Tiger Nut (Cyperus esculentus) Commercialization: Health Aspects, Composition, Properties, and Food Applications. Comprehensive Reviews in Food Science and Food Safety, 11(4), 366-377. doi:10.1111/j.1541-4337.2012.00190.x

Chinma, C. E., Abu, J. O., & Abubakar, Y. A. (2010). Effect of tigernut (Cyperus esculentus) flour addition on the quality of wheat-based cake. International Journal of Food Science & Technology, 45(8), 1746-1752. doi:10.1111/j.1365-2621.2010.02334.x

Aguilar, N., Albanell, E., Miñarro, B., & Capellas, M. (2015). Chickpea and tiger nut flours as alternatives to emulsifier and shortening in gluten-free bread. LWT - Food Science and Technology, 62(1), 225-232. doi:10.1016/j.lwt.2014.12.045

Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427-437. doi:10.1016/s0271-5317(97)00010-9

Mahasukhonthachat, K., Sopade, P. A., & Gidley, M. J. (2010). Kinetics of starch digestion in sorghum as affected by particle size. Journal of Food Engineering, 96(1), 18-28. doi:10.1016/j.jfoodeng.2009.06.051

Granfeldt, Y., Björck, I., Drews, A., & Tovar, J. (1994). An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. The American Journal of Clinical Nutrition, 59(3), 777S-777S. doi:10.1093/ajcn/59.3.777s

Sreerama, Y. N., Sashikala, V. B., Pratape, V. M., & Singh, V. (2012). Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chemistry, 131(2), 462-468. doi:10.1016/j.foodchem.2011.09.008

Martín-Esparza, M. E., Raigón, M. D., Raga, A., & Albors, A. (2018). High fibre tiger nut pasta and xanthan gum: cooking quality, microstructure, physico-chemical properties and consumer acceptance. Food Science and Biotechnology, 27(4), 1075-1084. doi:10.1007/s10068-018-0341-1

Mudgil, D., & Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 61, 1-6. doi:10.1016/j.ijbiomac.2013.06.044

Roberts, K. T., Cui, S. W., Wu, Y., Williams, S. A., Wang, C., & Graham, T. (2014). Physicochemical evaluation of fenugreek gum and extrusion modified fenugreek gum and effects on starch degradation in bread. Bioactive Carbohydrates and Dietary Fibre, 4(2), 176-183. doi:10.1016/j.bcdf.2014.09.006

Neelakantan, N., Narayanan, M., de Souza, R. J., & van Dam, R. M. (2014). Effect of fenugreek (Trigonella foenum-graecumL.) intake on glycemia: a meta-analysis of clinical trials. Nutrition Journal, 13(1). doi:10.1186/1475-2891-13-7

Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33(3-4), 233-245. doi:10.1016/s0963-9969(00)00038-7

Hager, A.-S., Czerny, M., Bez, J., Zannini, E., & Arendt, E. K. (2013). Starch properties, in vitro digestibility and sensory evaluation of fresh egg pasta produced from oat, teff and wheat flour. Journal of Cereal Science, 58(1), 156-163. doi:10.1016/j.jcs.2013.03.004

Lu, X., Brennan, M. A., Serventi, L., Liu, J., Guan, W., & Brennan, C. S. (2018). Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chemistry, 264, 199-209. doi:10.1016/j.foodchem.2018.04.130

Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23(3), 849-855. doi:10.1016/j.foodhyd.2008.03.016

Larrosa, V., Lorenzo, G., Zaritzky, N., & Califano, A. (2013). Optimization of rheological properties of gluten-free pasta dough using mixture design. Journal of Cereal Science, 57(3), 520-526. doi:10.1016/j.jcs.2013.03.003

Georgopoulos, T., Larsson, H., & Eliasson, A.-C. (2004). A comparison of the rheological properties of wheat flour dough and its gluten prepared by ultracentrifugation. Food Hydrocolloids, 18(1), 143-151. doi:10.1016/s0268-005x(03)00059-6

Fiorda, F. A., Soares, M. S., da Silva, F. A., Grosmann, M. V. E., & Souto, L. R. F. (2013). Microestructure, texture and colour of gluten-free pasta made with amaranth flour, cassava starch and cassava bagasse. LWT - Food Science and Technology, 54(1), 132-138. doi:10.1016/j.lwt.2013.04.020

Nowacka, M., Tylewicz, U., Tappi, S., Siroli, L., Lanciotti, R., Romani, S., & Witrowa-Rajchert, D. (2018). Ultrasound assisted osmotic dehydration of organic cranberries (Vaccinium oxycoccus): Study on quality parameters evolution during storage. Food Control, 93, 40-47. doi:10.1016/j.foodcont.2018.05.005

Bouasla, A., Wójtowicz, A., & Zidoune, M. N. (2017). Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT, 75, 569-577. doi:10.1016/j.lwt.2016.10.005

Laleg, K., Cassan, D., Barron, C., Prabhasankar, P., & Micard, V. (2016). Structural, Culinary, Nutritional and Anti-Nutritional Properties of High Protein, Gluten Free, 100% Legume Pasta. PLOS ONE, 11(9), e0160721. doi:10.1371/journal.pone.0160721

Kaur, G., Sharma, S., Nagi, H. P. S., & Dar, B. N. (2011). Functional properties of pasta enriched with variable cereal brans. Journal of Food Science and Technology, 49(4), 467-474. doi:10.1007/s13197-011-0294-3

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record