- -

Agave Syrup as an Alternative to Sucrose in Muffins: Impacts on Rheological, Microstructural, Physical, and Sensorial Properties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Agave Syrup as an Alternative to Sucrose in Muffins: Impacts on Rheological, Microstructural, Physical, and Sensorial Properties

Show simple item record

Files in this item

dc.contributor.author Ozuna, César es_ES
dc.contributor.author Trueba-Vázquez, Eugenia es_ES
dc.contributor.author Moraga Ballesteros, Gemma es_ES
dc.contributor.author Llorca Martínez, Mª Empar es_ES
dc.contributor.author Hernando Hernando, Mª Isabel es_ES
dc.date.accessioned 2021-05-05T03:32:37Z
dc.date.available 2021-05-05T03:32:37Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 2304-8158 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165962
dc.description.abstract [EN] Natural sweeteners, such as agave syrup, might be a healthy alternative to sucrose used in sweet bakery products linked to obesity. We evaluated the effect of sucrose replacement by agave syrup on rheological and microstructural properties of muffin batter and on physical and sensorial properties of the baked product. Muffins were formulated by replacing 25%, 50%, 75%, and 100% of sucrose by agave syrup (AS) and partially hydrolyzed agave syrup (PHAS), and by adding xanthan gum and doubled quantities of leavening agents. Rheological and microstructural properties of batter during baking were analyzed over the range of 25-100 degrees C. In the muffins, the structure, texture, color, and sensory acceptance were studied. The combination of agave syrup with xanthan gum and doubled quantities of leavening agents affected (p< 0.05) rheological and microstructural properties of the batters and textural properties of the low-sucrose muffins compared to the controls. The increase in agave syrup levels resulted in a darker crumb and crust. Sensory evaluation showed that AS-75 and PHAS-75 were the best alternatives to the control samples. Our results suggest a plausible substitution of up to 75% of sucrose by agave syrup in preparation of muffins, with physical and sensorial characteristics similar to those of their sucrose-containing counterparts. es_ES
dc.description.sponsorship This research was funded by Direccion de Apoyo a la Investigacion y Posgrado (Universidad de Guanajuato, Mexico), grant number 1366/2019. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Foods es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Inulin es_ES
dc.subject Bakery products es_ES
dc.subject Xanthan gum es_ES
dc.subject Leavening agent es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Agave Syrup as an Alternative to Sucrose in Muffins: Impacts on Rheological, Microstructural, Physical, and Sensorial Properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/foods9070895 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UG//1366%2F2019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Ozuna, C.; Trueba-Vázquez, E.; Moraga Ballesteros, G.; Llorca Martínez, ME.; Hernando Hernando, MI. (2020). Agave Syrup as an Alternative to Sucrose in Muffins: Impacts on Rheological, Microstructural, Physical, and Sensorial Properties. Foods. 9(7):1-15. https://doi.org/10.3390/foods9070895 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/foods9070895 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 32650358 es_ES
dc.identifier.pmcid PMC7404643 es_ES
dc.relation.pasarela S\418901 es_ES
dc.contributor.funder Universidad de Guanajuato es_ES
dc.description.references Luo, X., Arcot, J., Gill, T., Louie, J. C. Y., & Rangan, A. (2019). A review of food reformulation of baked products to reduce added sugar intake. Trends in Food Science & Technology, 86, 412-425. doi:10.1016/j.tifs.2019.02.051 es_ES
dc.description.references Peris, M., Rubio-Arraez, S., Castelló, M. L., & Ortolá, M. D. (2019). From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products. Foods, 8(12), 660. doi:10.3390/foods8120660 es_ES
dc.description.references Martínez-Cervera, S., de la Hera, E., Sanz, T., Gómez, M., & Salvador, A. (2011). Effect of using Erythritol as a Sucrose Replacer in Making Spanish Muffins Incorporating Xanthan Gum. Food and Bioprocess Technology, 5(8), 3203-3216. doi:10.1007/s11947-011-0734-0 es_ES
dc.description.references Othman, N. A., Abdul Manaf, M., Harith, S., & Wan Ishak, W. R. (2018). Influence of Avocado Purée as a Fat Replacer on Nutritional, Fatty Acid, and Organoleptic Properties of Low-Fat Muffins. Journal of the American College of Nutrition, 37(7), 583-588. doi:10.1080/07315724.2018.1451408 es_ES
dc.description.references Bucher Della Torre, S., Keller, A., Laure Depeyre, J., & Kruseman, M. (2016). Sugar-Sweetened Beverages and Obesity Risk in Children and Adolescents: A Systematic Analysis on How Methodological Quality May Influence Conclusions. Journal of the Academy of Nutrition and Dietetics, 116(4), 638-659. doi:10.1016/j.jand.2015.05.020 es_ES
dc.description.references Moynihan, P. J., & Kelly, S. A. M. (2013). Effect on Caries of Restricting Sugars Intake. Journal of Dental Research, 93(1), 8-18. doi:10.1177/0022034513508954 es_ES
dc.description.references Obesity and Overweighthttps://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight es_ES
dc.description.references Ghosh, S., & Sudha, M. L. (2011). A review on polyols: new frontiers for health-based bakery products. International Journal of Food Sciences and Nutrition, 63(3), 372-379. doi:10.3109/09637486.2011.627846 es_ES
dc.description.references Di Monaco, R., Miele, N. A., Cabisidan, E. K., & Cavella, S. (2018). Strategies to reduce sugars in food. Current Opinion in Food Science, 19, 92-97. doi:10.1016/j.cofs.2018.03.008 es_ES
dc.description.references Sahin, A. W., Zannini, E., Coffey, A., & Arendt, E. K. (2019). Sugar reduction in bakery products: Current strategies and sourdough technology as a potential novel approach. Food Research International, 126, 108583. doi:10.1016/j.foodres.2019.108583 es_ES
dc.description.references Struck, S., Jaros, D., Brennan, C. S., & Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49(9), 1963-1976. doi:10.1111/ijfs.12617 es_ES
dc.description.references Liang, S., & Were, L. M. (2018). Chlorogenic acid oxidation-induced greening of sunflower butter cookies as a function of different sweeteners and storage conditions. Food Chemistry, 241, 135-142. doi:10.1016/j.foodchem.2017.08.084 es_ES
dc.description.references Rothschild, J., Rosentrater, K. A., Onwulata, C., Singh, M., Menutti, L., Jambazian, P., & Omary, M. B. (2015). Influence of quinoa roasting on sensory and physicochemical properties of allergen-free, gluten-free cakes. International Journal of Food Science & Technology, 50(8), 1873-1881. doi:10.1111/ijfs.12837 es_ES
dc.description.references Zamora-Gasga, V. M., Bello-Pérez, L. A., Ortíz-Basurto, R. I., Tovar, J., & Sáyago-Ayerdi, S. G. (2014). Granola bars prepared with Agave tequilana ingredients: Chemical composition and in vitro starch hydrolysis. LWT - Food Science and Technology, 56(2), 309-314. doi:10.1016/j.lwt.2013.12.016 es_ES
dc.description.references Santiago-García, P. A., Mellado-Mojica, E., León-Martínez, F. M., & López, M. G. (2017). Evaluation of Agave angustifolia fructans as fat replacer in the cookies manufacture. LWT, 77, 100-109. doi:10.1016/j.lwt.2016.11.028 es_ES
dc.description.references Hooshmand, S., Holloway, B., Nemoseck, T., Cole, S., Petrisko, Y., Hong, M. Y., & Kern, M. (2014). Effects of Agave Nectar Versus Sucrose on Weight Gain, Adiposity, Blood Glucose, Insulin, and Lipid Responses in Mice. Journal of Medicinal Food, 17(9), 1017-1021. doi:10.1089/jmf.2013.0162 es_ES
dc.description.references KOEHLER, P. E., & KAYS, S. J. (1991). SWEET POTATO FLAVOR: QUANTITATIVE AND QUALITATIVE ASSESSMENT OF OPTIMUM SWEETNESS. Journal of Food Quality, 14(3), 241-249. doi:10.1111/j.1745-4557.1991.tb00065.x es_ES
dc.description.references Belščak-Cvitanović, A., Komes, D., Dujmović, M., Karlović, S., Biškić, M., Brnčić, M., & Ježek, D. (2015). Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives. Food Chemistry, 167, 61-70. doi:10.1016/j.foodchem.2014.06.064 es_ES
dc.description.references Rodríguez-García, J., Salvador, A., & Hernando, I. (2013). Replacing Fat and Sugar with Inulin in Cakes: Bubble Size Distribution, Physical and Sensory Properties. Food and Bioprocess Technology, 7(4), 964-974. doi:10.1007/s11947-013-1066-z es_ES
dc.description.references Diez-Sánchez, E., Quiles, A., Llorca, E., Reiβner, A.-M., Struck, S., Rohm, H., & Hernando, I. (2019). Extruded flour as techno-functional ingredient in muffins with berry pomace. LWT, 113, 108300. doi:10.1016/j.lwt.2019.108300 es_ES
dc.description.references Nieto‐Mazzocco, E., Saldaña‐Robles, A., Franco‐Robles, E., Rangel‐Contreras, A. K., Cerón‐García, A., & Ozuna, C. (2019). Optimization of sorghum, rice, and amaranth flour levels in the development of gluten‐free bakery products using response surface methodology. Journal of Food Processing and Preservation, 44(1). doi:10.1111/jfpp.14302 es_ES
dc.description.references Wilderjans, E., Luyts, A., Brijs, K., & Delcour, J. A. (2013). Ingredient functionality in batter type cake making. Trends in Food Science & Technology, 30(1), 6-15. doi:10.1016/j.tifs.2013.01.001 es_ES
dc.description.references Carrascal, A., Rasines, L., Ríos, Y., Rioja, P., Rodríguez, R., & Alvarez-Sabatel, S. (2019). Development of reduced-fat muffins by the application of jet-impingement microwave (JIM) technology. Journal of Food Engineering, 262, 131-141. doi:10.1016/j.jfoodeng.2019.05.016 es_ES
dc.description.references Alvarez, M. D., Herranz, B., Fuentes, R., Cuesta, F. J., & Canet, W. (2016). Replacement of Wheat Flour by Chickpea Flour in Muffin Batter: Effect on Rheological Properties. Journal of Food Process Engineering, 40(2), e12372. doi:10.1111/jfpe.12372 es_ES
dc.description.references Encina-Zelada, C. R., Cadavez, V., Monteiro, F., Teixeira, J. A., & Gonzales-Barron, U. (2018). Combined effect of xanthan gum and water content on physicochemical and textural properties of gluten-free batter and bread. Food Research International, 111, 544-555. doi:10.1016/j.foodres.2018.05.070 es_ES
dc.description.references Effects of Sugar Substitution with “Stevianna” on the Sensory Characteristics of Muffinshttps://www.hindawi.com/journals/jfq/2017/8636043/ es_ES
dc.description.references Gómez, M., Ronda, F., Caballero, P. A., Blanco, C. A., & Rosell, C. M. (2007). Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocolloids, 21(2), 167-173. doi:10.1016/j.foodhyd.2006.03.012 es_ES
dc.description.references Bodart, M., de Peñaranda, R., Deneyer, A., & Flamant, G. (2008). Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43(12), 2046-2058. doi:10.1016/j.buildenv.2007.12.006 es_ES
dc.description.references Peressini, D., & Sensidoni, A. (2009). Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. Journal of Cereal Science, 49(2), 190-201. doi:10.1016/j.jcs.2008.09.007 es_ES
dc.description.references Kocer, D., Hicsasmaz, Z., Bayindirli, A., & Katnas, S. (2007). Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar- and fat-replacer. Journal of Food Engineering, 78(3), 953-964. doi:10.1016/j.jfoodeng.2005.11.034 es_ES


This item appears in the following Collection(s)

Show simple item record