Mostrar el registro sencillo del ítem
dc.contributor.author | Jordán Palomar, Isabel | es_ES |
dc.contributor.author | G-Valldecabres, Jorge | es_ES |
dc.contributor.author | Tzortzopoulos, Patricia | es_ES |
dc.contributor.author | Pellicer, Eugenio | es_ES |
dc.date.accessioned | 2021-05-06T03:30:50Z | |
dc.date.available | 2021-05-06T03:30:50Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 0926-5805 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166014 | |
dc.description.abstract | [EN] Traditionally, in heritage architecture, each discipline works independently, generating dispersed data. Heritage Building Information Modelling (HBIM) can provide benefits in managing heritage projects. However, the modelling task is laborious, BIM software tends to be complex, and historical databases are not synchronised with HBIM models. The aim of this research is to create an online work platform where interdisciplinary stakeholders can synchronise heritage information. Design Science Research (DSR) was the methodological approach adopted, consisting of designing an artefact and evaluating it iteratively. As a result, an innovative in-cloud system named BlMlegacy that connects the intrinsic HBIM database with heritage documentary databases was designed. BlMlegacy was used to manage a complete heritage registration project in a case study. The results were validated through a focus group with external professionals. The theoretical definition of the BlMlegacy platform structure is a contribution to knowledge as it could be used as a basis to develop new systems. BlMlegacy allows non-technical heritage stakeholders to collaborate effectively, which is a notable practical contribution. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the members of the research project entitled: The Design of a Database, Management Model for the Information and Knowledge of Architectural Heritage; HAR2013-41614-R; and the members of the UPV and the University of Huddersfield that have collaborated within the research. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Automation in Construction | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.subject.classification | EXPRESION GRAFICA ARQUITECTONICA | es_ES |
dc.title | An online platform to unify and synchronise heritage architecture information | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.autcon.2019.103008 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//HAR2013-41614-R/ES/EL DISEÑO DE UNA BASE DE DATOS, MODELO PARA LA GESTION DE LA INFORMACION Y DEL CONOCIMIENTO DEL PATRIMONIO ARQUITECTONICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Expresión Gráfica Arquitectónica - Departament d'Expressió Gràfica Arquitectònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni | es_ES |
dc.description.bibliographicCitation | Jordán Palomar, I.; G-Valldecabres, J.; Tzortzopoulos, P.; Pellicer, E. (2020). An online platform to unify and synchronise heritage architecture information. Automation in Construction. 110:1-17. https://doi.org/10.1016/j.autcon.2019.103008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.autcon.2019.103008 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 110 | es_ES |
dc.relation.pasarela | S\399266 | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | Migilinskas, D., Popov, V., Juocevicius, V., & Ustinovichius, L. (2013). The Benefits, Obstacles and Problems of Practical Bim Implementation. Procedia Engineering, 57, 767-774. doi:10.1016/j.proeng.2013.04.097 | es_ES |
dc.description.references | Teo, M. M. M., & Loosemore, M. (2001). A theory of waste behaviour in the construction industry. Construction Management and Economics, 19(7), 741-751. doi:10.1080/01446190110067037 | es_ES |
dc.description.references | Kempton, J. (2006). Can lean thinking apply to the repair and refurbishment of properties in the registered social landlord sector? Structural Survey, 24(3), 201-211. doi:10.1108/02630800610678850 | es_ES |
dc.description.references | Murphy, M., McGovern, E., & Pavia, S. (2009). Historic building information modelling (HBIM). Structural Survey, 27(4), 311-327. doi:10.1108/02630800910985108 | es_ES |
dc.description.references | Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings — Literature review and future needs. Automation in Construction, 38, 109-127. doi:10.1016/j.autcon.2013.10.023 | es_ES |
dc.description.references | Quattrini, R., Malinverni, E. S., Clini, P., Nespeca, R., & Orlietti, E. (2015). FROM TLS TO HBIM. HIGH QUALITY SEMANTICALLY-AWARE 3D MODELING OF COMPLEX ARCHITECTURE. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 367-374. doi:10.5194/isprsarchives-xl-5-w4-367-2015 | es_ES |
dc.description.references | Oreni, D., Brumana, R., Della Torre, S., Banfi, F., Barazzetti, L., & Previtali, M. (2014). Survey turned into HBIM: the restoration and the work involved concerning the Basilica di Collemaggio after the earthquake (L’Aquila). ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5, 267-273. doi:10.5194/isprsannals-ii-5-267-2014 | es_ES |
dc.description.references | Barazzetti, L., Banfi, F., Brumana, R., Gusmeroli, G., Previtali, M., & Schiantarelli, G. (2015). Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory, 57, 71-87. doi:10.1016/j.simpat.2015.06.004 | es_ES |
dc.description.references | Green, A., & Dixon, J. (2016). Standing buildings and built heritage. Post-Medieval Archaeology, 50(1), 121-133. doi:10.1080/00794236.2016.1169492 | es_ES |
dc.description.references | Ilter, D., & Ergen, E. (2015). BIM for building refurbishment and maintenance: current status and research directions. Structural Survey, 33(3), 228-256. doi:10.1108/ss-02-2015-0008 | es_ES |
dc.description.references | Megahed, N. (2015). Towards a Theoretical Framework for HBIM Approach in Historic Preservation and Management. International Journal of Architectural Research: ArchNet-IJAR, 9(3), 130. doi:10.26687/archnet-ijar.v9i3.737 | es_ES |
dc.description.references | Perng, Y.-H., Hsia, Y.-P., & Lu, H.-J. (2007). A Service Quality Improvement Dynamic Decision Support System for Refurbishment Contractors. Total Quality Management & Business Excellence, 18(7), 731-749. doi:10.1080/14783360701349716 | es_ES |
dc.description.references | Du, J., Zou, Z., Shi, Y., & Zhao, D. (2018). Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative decision-making. Automation in Construction, 85, 51-64. doi:10.1016/j.autcon.2017.10.009 | es_ES |
dc.description.references | Li, C. Z., Xue, F., Li, X., Hong, J., & Shen, G. Q. (2018). An Internet of Things-enabled BIM platform for on-site assembly services in prefabricated construction. Automation in Construction, 89, 146-161. doi:10.1016/j.autcon.2018.01.001 | es_ES |
dc.description.references | Grilo, A., & Jardim-Goncalves, R. (2010). Value proposition on interoperability of BIM and collaborative working environments. Automation in Construction, 19(5), 522-530. doi:10.1016/j.autcon.2009.11.003 | es_ES |
dc.description.references | Grover, R., & Froese, T. M. (2016). Knowledge Management in Construction Using a SocioBIM Platform: A Case Study of AYO Smart Home Project. Procedia Engineering, 145, 1283-1290. doi:10.1016/j.proeng.2016.04.165 | es_ES |
dc.description.references | Howell, S., Rezgui, Y., & Beach, T. (2017). Integrating building and urban semantics to empower smart water solutions. Automation in Construction, 81, 434-448. doi:10.1016/j.autcon.2017.02.004 | es_ES |
dc.description.references | Jeong, W., Chang, S., Son, J., & Yi, J.-S. (2016). BIM-Integrated Construction Operation Simulation for Just-In-Time Production Management. Sustainability, 8(11), 1106. doi:10.3390/su8111106 | es_ES |
dc.description.references | Lee, J., Park, Y.-J., Choi, C.-H., & Han, C.-H. (2017). BIM-assisted labor productivity measurement method for structural formwork. Automation in Construction, 84, 121-132. doi:10.1016/j.autcon.2017.08.009 | es_ES |
dc.description.references | Holmström, J., Ketokivi, M., & Hameri, A.-P. (2009). Bridging Practice and Theory: A Design Science Approach. Decision Sciences, 40(1), 65-87. doi:10.1111/j.1540-5915.2008.00221.x | es_ES |
dc.description.references | Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24(3), 45-77. doi:10.2753/mis0742-1222240302 | es_ES |
dc.description.references | Inyim, P., Rivera, J., & Zhu, Y. (2015). Integration of Building Information Modeling and Economic and Environmental Impact Analysis to Support Sustainable Building Design. Journal of Management in Engineering, 31(1). doi:10.1061/(asce)me.1943-5479.0000308 | es_ES |
dc.description.references | Zhao, D., McCoy, A. P., Bulbul, T., Fiori, C., & Nikkhoo, P. (2015). Building Collaborative Construction Skills through BIM-integrated Learning Environment. International Journal of Construction Education and Research, 11(2), 97-120. doi:10.1080/15578771.2014.986251 | es_ES |
dc.description.references | Gurevich, U., Sacks, R., & Shrestha, P. (2017). BIM adoption by public facility agencies: impacts on occupant value. Building Research & Information, 45(6), 610-630. doi:10.1080/09613218.2017.1289029 | es_ES |
dc.description.references | Dainty, A., Leiringer, R., Fernie, S., & Harty, C. (2017). BIM and the small construction firm: a critical perspective. Building Research & Information, 45(6), 696-709. doi:10.1080/09613218.2017.1293940 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |