- -

M-QAM signal transmission at the photonically generated K-band over thermal-induced turbulent FSO links with different turbulence distributions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

M-QAM signal transmission at the photonically generated K-band over thermal-induced turbulent FSO links with different turbulence distributions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vallejo-Castro, Luis es_ES
dc.contributor.author Nguyen, Dong-Nhat es_ES
dc.contributor.author Bohata, Jan es_ES
dc.contributor.author Ortega Tamarit, Beatriz es_ES
dc.contributor.author Zvanovec, Stanislav es_ES
dc.date.accessioned 2021-05-06T03:31:38Z
dc.date.available 2021-05-06T03:31:38Z
dc.date.issued 2020-06-01 es_ES
dc.identifier.issn 1559-128X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166019
dc.description.abstract [EN] We present a theoretical and experimental study on the impact of different thermal-induced free-space turbulence distributions on the M-quadrature amplitude modulation (M-QAM) signal transmission in radio frequency K-band over hybrid optical links of standard single mode fiber (SSMF) and free-space optics (FSO). Frequency multiplication using an external intensity modulator biased at the null transmission point has been employed to photonically generate radio signals at a frequency of 25 GHz, included for the frequency bands for fifth-generation (5G) mobile networks. Moreover, extensive simulations have been performed for 10 Gb/s with 4-, 16-, and 64-QAM over 5 km of SSMF and 500 m long FSO channels under scenarios with different turbulence levels and distributions. Proof-of-concept experiments have been conducted for 20 MHz with 4- and 64-QAM over 5 km of SSMF and 2 m long FSO channels under turbulence conditions. Both theoretical and experimental systems have been analyzed in terms of error vector magnitude (EVM) performance showing feasible transmission over the hybrid links in the received optical power range. Non-uniform turbulence distributions are shown to have a different impact on M-QAM modulation formats, i.e., turbulence distributions with higher strength in the middle of the FSO link reveal a 1.9 dB penalty when using 64-QAM signals compared to a 1.3 dB penalty using 4-QAM signals, whereas higher penalties have been measured when 4-QAM format is transmitted over turbulence distributions with larger magnitude in the second half of the FSO link. The results have been validated by theoretical predictions and lead to practical consequences on future networks' deployment. es_ES
dc.description.sponsorship Generalitat Valenciana (PROMETEO 2017/103); Ministerio de Ciencia, Innovacion y Universidades (FOCAL RTI2018-101658-B-I00); Ministerstvo Prumyslu a Obchodu (FV30427) and within European Cooperation in Science andTechnology (CA16220). es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Applied Optics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title M-QAM signal transmission at the photonically generated K-band over thermal-induced turbulent FSO links with different turbulence distributions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/AO.390103 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MPO//FV30427/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA16220/EU/European Network for High Performance Integrated Microwave Photonics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101658-B-I00/ES/REDES OPTICAS HIBRIDAS ENERGETICAMENTE EFICIENTES PARA COMUNICACIONES E ILUMINACION EN INTERIORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Vallejo-Castro, L.; Nguyen, D.; Bohata, J.; Ortega Tamarit, B.; Zvanovec, S. (2020). M-QAM signal transmission at the photonically generated K-band over thermal-induced turbulent FSO links with different turbulence distributions. Applied Optics. 59(16):4997-5005. https://doi.org/10.1364/AO.390103 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/AO.390103 es_ES
dc.description.upvformatpinicio 4997 es_ES
dc.description.upvformatpfin 5005 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 16 es_ES
dc.identifier.pmid 32543497 es_ES
dc.relation.pasarela S\418861 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministry of Industry and Trade, República Checa es_ES
dc.description.references Zhang, R., Lu, F., Xu, M., Liu, S., Peng, P.-C., Shen, S., … Chang, G.-K. (2018). An Ultra-Reliable MMW/FSO A-RoF System Based on Coordinated Mapping and Combining Technique for 5G and Beyond Mobile Fronthaul. Journal of Lightwave Technology, 36(20), 4952-4959. doi:10.1109/jlt.2018.2866767 es_ES
dc.description.references Lee, C. H. (Ed.). (2017). Microwave Photonics. doi:10.1201/b13886 es_ES
dc.description.references Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2015). Cloud RAN for Mobile Networks—A Technology Overview. IEEE Communications Surveys & Tutorials, 17(1), 405-426. doi:10.1109/comst.2014.2355255 es_ES
dc.description.references Lim, C., Tian, Y., Ranaweera, C., Nirmalathas, T. A., Wong, E., & Lee, K.-L. (2019). Evolution of Radio-Over-Fiber Technology. Journal of Lightwave Technology, 37(6), 1647-1656. doi:10.1109/jlt.2018.2876722 es_ES
dc.description.references Doi, Y., Fukushima, S., Ohno, T., & Yoshino, K. (2001). Frequency stabilization of millimeter-wave subcarrier using laser heterodyne source and optical delay line. IEEE Photonics Technology Letters, 13(9), 1002-1004. doi:10.1109/68.942674 es_ES
dc.description.references Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551 es_ES
dc.description.references Zhang, H., Cai, L., Xie, S., Zhang, K., Wu, X., & Dong, Z. (2017). A Novel Radio-Over-Fiber System Based on Carrier Suppressed Frequency Eightfold Millimeter Wave Generation. IEEE Photonics Journal, 9(5), 1-6. doi:10.1109/jphot.2017.2731620 es_ES
dc.description.references Khalighi, M. A., & Uysal, M. (2014). Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231-2258. doi:10.1109/comst.2014.2329501 es_ES
dc.description.references Bloom, S., Korevaar, E., Schuster, J., & Willebrand, H. (2003). Understanding the performance of free-space optics [Invited]. Journal of Optical Networking, 2(6), 178. doi:10.1364/jon.2.000178 es_ES
dc.description.references Anderson, H. R. (2003). Fixed Broadband Wireless System Design. doi:10.1002/0470861290 es_ES
dc.description.references Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2019). Optical Wireless Communications. doi:10.1201/9781315151724 es_ES
dc.description.references Borah, D. K., & Voelz, D. G. (2009). Pointing Error Effects on Free-Space Optical Communication Links in the Presence of Atmospheric Turbulence. Journal of Lightwave Technology, 27(18), 3965-3973. doi:10.1109/jlt.2009.2022771 es_ES
dc.description.references Esmail, M. A., Ragheb, A., Fathallah, H., & Alouini, M.-S. (2017). Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System Under Light Sand Storm Condition. IEEE Photonics Journal, 9(1), 1-12. doi:10.1109/jphot.2016.2641741 es_ES
dc.description.references Libich, J., & Zvanovec, S. (2011). Influences of turbulences in near vicinity of buildings on free-space optical links. IET Microwaves, Antennas & Propagation, 5(9), 1039. doi:10.1049/iet-map.2010.0630 es_ES
dc.description.references Niachou, K., Livada, I., & Santamouris, M. (2008). Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions. Part II: Airflow analysis. Building and Environment, 43(8), 1393-1403. doi:10.1016/j.buildenv.2007.01.040 es_ES
dc.description.references Nguyen, D.-N., Bohata, J., Spacil, J., Dousek, D., Komanec, M., Zvanovec, S., … Ortega, B. (2019). M-QAM transmission over hybrid microwave photonic links at the K-band. Optics Express, 27(23), 33745. doi:10.1364/oe.27.033745 es_ES
dc.description.references Nguyen, D.-N., Bohata, J., Komanec, M., Zvanovec, S., Ortega, B., & Ghassemlooy, Z. (2019). Seamless 25 GHz Transmission of LTE 4/16/64-QAM Signals Over Hybrid SMF/FSO and Wireless Link. Journal of Lightwave Technology, 37(24), 6040-6047. doi:10.1109/jlt.2019.2945588 es_ES
dc.description.references Vallejo, L., Komanec, M., Ortega, B., Bohata, J., Nguyen, D.-N., Zvanovec, S., & Almenar, V. (2020). Impact of Thermal-Induced Turbulent Distribution Along FSO Link on Transmission of Photonically Generated mmW Signals in the Frequency Range 26–40 GHz. IEEE Photonics Journal, 12(1), 1-9. doi:10.1109/jphot.2019.2959227 es_ES
dc.description.references Qi, G., Yao, J., Seregelyi, J., Paquet, S., Belisle, C., Zhang, X., … Kashyap, R. (2006). Phase-Noise Analysis of Optically Generated Millimeter-Wave Signals With External Optical Modulation Techniques. Journal of Lightwave Technology, 24(12), 4861-4875. doi:10.1109/jlt.2006.884990 es_ES
dc.description.references Ma, J., Yu, J., Yu, C., Xin, X., Zeng, J., & Chen, L. (2007). Fiber Dispersion Influence on Transmission of the Optical Millimeter-Waves Generated Using LN-MZM Intensity Modulation. Journal of Lightwave Technology, 25(11), 3244-3256. doi:10.1109/jlt.2007.907794 es_ES
dc.description.references Andrews, L. C., & Phillips, R. L. (2005). Laser Beam Propagation through Random Media. doi:10.1117/3.626196 es_ES
dc.description.references Chen, X., & Yao, J. (2015). A High Spectral Efficiency Coherent Microwave Photonic Link Employing Both Amplitude and Phase Modulation With Digital Phase Noise Cancellation. Journal of Lightwave Technology, 1-1. doi:10.1109/jlt.2015.2419456 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem