- -

Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leastro, Mikhail Oliveira es_ES
dc.contributor.author Ortega Castro, Deibis Yorlenis es_ES
dc.contributor.author Freitas-Astúa, Juliana es_ES
dc.contributor.author Kitajima, Elliot Watanabe es_ES
dc.contributor.author Pallás Benet, Vicente es_ES
dc.contributor.author SANCHEZ NAVARRO, JESUS ANGEL es_ES
dc.date.accessioned 2021-05-07T03:32:20Z
dc.date.available 2021-05-07T03:32:20Z
dc.date.issued 2020-06-09 es_ES
dc.identifier.issn 1664-302X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166059
dc.description.abstract [EN] Citrus leprosis virus C (CiLV-C) belongs to the genusCilevirus, familyKitaviridae, and is considered the most devastating virus infecting citrus in Brazil, being the main viral pathogen responsible for citrus leprosis (CL), a severe disease that affects citrus orchards in Latin America. Here, proteins encoded by CiLV-C genomic RNA 1 and 2 were screened for potential RNA silencing suppressor (RSS) activity by five methods. Using the GFP-based reporter agroinfiltration assay, we have not found potential local suppressor activity for the five CiLV-C encoded proteins. However, when RSS activity was evaluated using the alfalfa mosaic virus (AMV) system, we found that the p29, p15, and p61 CiLV-C proteins triggered necrosis response and increased the AMV RNA 3 accumulation, suggesting a suppressive functionality. From the analysis of small interfering RNAs (siRNAs) accumulation, we observed that the ectopic expression of the p29, p15, and p61 reduced significantly the accumulation of GFP derived siRNAs. The use of the RSS defective turnip crinkle virus (TCV) system revealed that only thetrans-expression of the p15 protein restored the cell-to-cell viral movement. Finally, the potato virus X (PVX) system revealed that the expression of p29, p15, and p61 increased the PVX RNA accumulation; in addition, the p29 and p15 enhanced the pathogenicity of PVX resulting in the death of tobacco plants. Furthermore, PVX-p61 infection resulted in a hypersensitive response (HR), suggesting that p61 could also activate a plant defense response mechanism. This is the first report describing the RSS activity for CiLV-C proteins and, moreover, for a member of the familyKitaviridae. es_ES
dc.description.sponsorship This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), proc. 2014/0845-9, 2017/50222-0, 2015/10249-1, and 2017/19898-8. This work was also supported by Instituto para la Formacion y Aprovechamiento de Recursos Humanos, Becas IFARHU-SENACYT, contrato 270-2018-361, grant BIO2017-88321-R from the Spanish Agencia Estatal de Investigacion (AEI), Fondo Europeo de Desarrollo Regional (FEDER), and the Prometeo Program GV2015/010 from the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Microbiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject RNA silencing suppressor es_ES
dc.subject Citrus leprosis virus C es_ES
dc.subject RSS activity es_ES
dc.subject Hypersensitive response es_ES
dc.subject FamilyKitaviridae es_ES
dc.title Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fmicb.2020.01231 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2015%2F010/ES/Interacciones RNA-proteína y proteína-proteína en procesos de desarrollo y patogénesis mediados por virus y agentes subvirales en cultivos de interés Agronómico (RNAPROT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2017%2F50222-0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2017%2F19898-8/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2015%2F10249-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2014%2F08458-9/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-88321-R/ES/DESCRIFRANDO INTERACCIONES VIRUS-PLANTA ESENCIALES PARA LA SUSCEPTIBILIDAD Y%2FO RESISTENCIA EN DOS PATOSISTEMAS AGRONOMICAMENTE RELEVANTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SENACYT//270-2018-361/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Leastro, MO.; Ortega Castro, DY.; Freitas-Astúa, J.; Kitajima, EW.; Pallás Benet, V.; Sanchez Navarro, JA. (2020). Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity. Frontiers in Microbiology. 11:1-16. https://doi.org/10.3389/fmicb.2020.01231 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fmicb.2020.01231 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.pmid 32655520 es_ES
dc.identifier.pmcid PMC7325951 es_ES
dc.relation.pasarela S\433228 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.contributor.funder Secretaría Nacional de Ciencia, Tecnología e Innovación, Panamá es_ES
dc.description.references Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., & Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences, 95(22), 13079-13084. doi:10.1073/pnas.95.22.13079 es_ES
dc.description.references Aravin, A. A., Naumova, N. M., Tulin, A. V., Vagin, V. V., Rozovsky, Y. M., & Gvozdev, V. A. (2001). Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology, 11(13), 1017-1027. doi:10.1016/s0960-9822(01)00299-8 es_ES
dc.description.references Arena, G. D., Ramos-González, P. L., Nunes, M. A., Ribeiro-Alves, M., Camargo, L. E. A., Kitajima, E. W., … Freitas-Astúa, J. (2016). Citrus leprosis virus C Infection Results in Hypersensitive-Like Response, Suppression of the JA/ET Plant Defense Pathway and Promotion of the Colonization of Its Mite Vector. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01757 es_ES
dc.description.references Borges, F., & Martienssen, R. A. (2015). The expanding world of small RNAs in plants. Nature Reviews Molecular Cell Biology, 16(12), 727-741. doi:10.1038/nrm4085 es_ES
dc.description.references Brigneti, G. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/emboj/17.22.6739 es_ES
dc.description.references Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16(5), 265-272. doi:10.1016/j.tplants.2011.02.010 es_ES
dc.description.references Cañizares, M. C., Navas-Castillo, J., & Moriones, E. (2008). Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology, 379(1), 168-174. doi:10.1016/j.virol.2008.06.020 es_ES
dc.description.references Castel, S. E., & Martienssen, R. A. (2013). RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics, 14(2), 100-112. doi:10.1038/nrg3355 es_ES
dc.description.references Chiba, M., Reed, J. C., Prokhnevsky, A. I., Chapman, E. J., Mawassi, M., Koonin, E. V., … Dolja, V. V. (2006). Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology, 346(1), 7-14. doi:10.1016/j.virol.2005.09.068 es_ES
dc.description.references Delgadillo, M. O., Sáenz, P., Salvador, B., García, J. A., & Simón-Mateo, C. (2004). Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. Journal of General Virology, 85(4), 993-999. doi:10.1099/vir.0.19735-0 es_ES
dc.description.references Ding, S.-W., & Voinnet, O. (2007). Antiviral Immunity Directed by Small RNAs. Cell, 130(3), 413-426. doi:10.1016/j.cell.2007.07.039 es_ES
dc.description.references Freitas-Astúa, J., Ramos-González, P. L., Arena, G. D., Tassi, A. D., & Kitajima, E. W. (2018). Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Current Opinion in Virology, 33, 66-73. doi:10.1016/j.coviro.2018.07.010 es_ES
dc.description.references García, J. A., & Pallás, V. (2015). Viral factors involved in plant pathogenesis. Current Opinion in Virology, 11, 21-30. doi:10.1016/j.coviro.2015.01.001 es_ES
dc.description.references Garita, L. C., Tassi, A. D., Calegario, R. F., Freitas-Astúa, J., Salaroli, R. B., Romão, G. O., & Kitajima, E. W. (2014). Experimental host range of Citrus leprosis virus C (CiLV-C). Tropical Plant Pathology, 39(1), 43-55. doi:10.1590/s1982-56762014005000004 es_ES
dc.description.references Guilley, H., Bortolamiol, D., Jonard, G., Bouzoubaa, S., & Ziegler-Graff, V. (2009). Rapid screening of RNA silencing suppressors by using a recombinant virus derived from beet necrotic yellow vein virus. Journal of General Virology, 90(10), 2536-2541. doi:10.1099/vir.0.011213-0 es_ES
dc.description.references Guo, Q., Liu, Q., A. Smith, N., Liang, G., & Wang, M.-B. (2016). RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops. Current Genomics, 17(6), 476-489. doi:10.2174/1389202917666160520103117 es_ES
dc.description.references Gupta, A. K., Hein, G. L., Graybosch, R. A., & Tatineni, S. (2018). Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing. Virology, 518, 152-162. doi:10.1016/j.virol.2018.02.013 es_ES
dc.description.references Hamilton, A. (2002). Two classes of short interfering RNA in RNA silencing. The EMBO Journal, 21(17), 4671-4679. doi:10.1093/emboj/cdf464 es_ES
dc.description.references Hamilton, A. J., & Baulcombe, D. C. (1999). A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science, 286(5441), 950-952. doi:10.1126/science.286.5441.950 es_ES
dc.description.references Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404(6775), 293-296. doi:10.1038/35005107 es_ES
dc.description.references Jones, L., Hamilton, A. J., Voinnet, O., Thomas, C. L., Maule, A. J., & Baulcombe, D. C. (1999). RNA–DNA Interactions and DNA Methylation in Post-Transcriptional Gene Silencing. The Plant Cell, 11(12), 2291-2301. doi:10.1105/tpc.11.12.2291 es_ES
dc.description.references Kakumani, P. K., Ponia, S. S., S, R. K., Sood, V., Chinnappan, M., Banerjea, A. C., … Bhatnagar, R. K. (2013). Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor. Journal of Virology, 87(16), 8870-8883. doi:10.1128/jvi.02774-12 es_ES
dc.description.references Kuchibhatla, D. B., Sherman, W. A., Chung, B. Y. W., Cook, S., Schneider, G., Eisenhaber, B., & Karlin, D. G. (2013). Powerful Sequence Similarity Search Methods and In-Depth Manual Analyses Can Identify Remote Homologs in Many Apparently «Orphan» Viral Proteins. Journal of Virology, 88(1), 10-20. doi:10.1128/jvi.02595-13 es_ES
dc.description.references LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a0 es_ES
dc.description.references Leastro, M. O., Kitajima, E. W., Silva, M. S., Resende, R. O., & Freitas-Astúa, J. (2018). Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01299 es_ES
dc.description.references Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2015). The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology, 478, 39-49. doi:10.1016/j.virol.2015.01.031 es_ES
dc.description.references Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2017). The functional analysis of distinct tospovirus movement proteins (NS M ) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Research, 227, 57-68. doi:10.1016/j.virusres.2016.09.023 es_ES
dc.description.references Li, F., & Ding, S.-W. (2006). Virus Counterdefense: Diverse Strategies for Evading the RNA-Silencing Immunity. Annual Review of Microbiology, 60(1), 503-531. doi:10.1146/annurev.micro.60.080805.142205 es_ES
dc.description.references Li, W. X., & Ding, S. W. (2001). Viral suppressors of RNA silencing. Current Opinion in Biotechnology, 12(2), 150-154. doi:10.1016/s0958-1669(00)00190-7 es_ES
dc.description.references Locali-Fabris, E. C., Freitas-Astúa, J., Souza, A. A., Takita, M. A., Astúa-Monge, G., Antonioli-Luizon, R., … Machado, M. A. (2006). Complete nucleotide sequence, genomic organization and phylogenetic analysis of Citrus leprosis virus cytoplasmic type. Journal of General Virology, 87(9), 2721-2729. doi:10.1099/vir.0.82038-0 es_ES
dc.description.references Sue Loesch-Fries, L., Jarvis, N. P., Krahn, K. J., Nelson, S. E., & Hall, T. C. (1985). Expression of Alfalfa Mosaic virus RNA 4 cDNA transcripts in Vitro and in Vivo. Virology, 146(2), 177-187. doi:10.1016/0042-6822(85)90002-9 es_ES
dc.description.references Lu, R., Folimonov, A., Shintaku, M., Li, W.-X., Falk, B. W., Dawson, W. O., & Ding, S.-W. (2004). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences, 101(44), 15742-15747. doi:10.1073/pnas.0404940101 es_ES
dc.description.references Lu, R., Maduro, M., Li, F., Li, H. W., Broitman-Maduro, G., Li, W. X., & Ding, S. W. (2005). Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature, 436(7053), 1040-1043. doi:10.1038/nature03870 es_ES
dc.description.references Lu, R. (2003). High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. The EMBO Journal, 22(21), 5690-5699. doi:10.1093/emboj/cdg546 es_ES
dc.description.references Lucy, A. P. (2000). Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. The EMBO Journal, 19(7), 1672-1680. doi:10.1093/emboj/19.7.1672 es_ES
dc.description.references Mallory, A. C., Reinhart, B. J., Bartel, D., Vance, V. B., & Bowman, L. H. (2002). A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proceedings of the National Academy of Sciences, 99(23), 15228-15233. doi:10.1073/pnas.232434999 es_ES
dc.description.references Mann, K. S., Johnson, K. N., Carroll, B. J., & Dietzgen, R. G. (2016). Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology, 490, 27-40. doi:10.1016/j.virol.2016.01.003 es_ES
dc.description.references Martínez-Pérez, M., Navarro, J. A., Pallás, V., & Sánchez-Navarro, J. A. (2019). A sensitive and rapid RNA silencing suppressor activity assay based on alfalfa mosaic virus expression vector. Virus Research, 272, 197733. doi:10.1016/j.virusres.2019.197733 es_ES
dc.description.references Matranga, C., & Zamore, P. D. (2007). Small silencing RNAs. Current Biology, 17(18), R789-R793. doi:10.1016/j.cub.2007.07.014 es_ES
dc.description.references Mérai, Z., Kerényi, Z., Kertész, S., Magna, M., Lakatos, L., & Silhavy, D. (2006). Double-Stranded RNA Binding May Be a General Plant RNA Viral Strategy To Suppress RNA Silencing. Journal of Virology, 80(12), 5747-5756. doi:10.1128/jvi.01963-05 es_ES
dc.description.references Moissiard, G., & Voinnet, O. (2004). Viral suppression of RNA silencing in plants. Molecular Plant Pathology, 5(1), 71-82. doi:10.1111/j.1364-3703.2004.00207.x es_ES
dc.description.references Moon, J. Y., & Park, J. M. (2016). Cross-Talk in Viral Defense Signaling in Plants. Frontiers in Microbiology, 07. doi:10.3389/fmicb.2016.02068 es_ES
dc.description.references Nakanishi, K. (2016). Anatomy of RISC  : how do small RNAs and chaperones activate Argonaute proteins? WIREs RNA, 7(5), 637-660. doi:10.1002/wrna.1356 es_ES
dc.description.references Pallás, V., Más, P., & Sánchez-Navarro, J. A. (1998). Detection of Plant RNA Viruses by Nonisotopic Dot-Blot Hybridization. Plant Virology Protocols, 461-468. doi:10.1385/0-89603-385-6:461 es_ES
dc.description.references Pascon, R. C., Kitajima, J. P., Breton, M. C., Assumpção, L., Greggio, C., Zanca, A. S., … da Silva, A. C. R. (2006). The Complete Nucleotide Sequence and Genomic Organization of Citrus Leprosis Associated Virus, Cytoplasmatic type (CiLV-C). Virus Genes, 32(3), 289-298. doi:10.1007/s11262-005-6913-1 es_ES
dc.description.references Peiro, A., Martinez-Gil, L., Tamborero, S., Pallas, V., Sanchez-Navarro, J. A., Mingarro, I., & Simon, A. (2013). The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016-3026. doi:10.1128/jvi.03648-13 es_ES
dc.description.references Pfeffer, S., Dunoyer, P., Heim, F., Richards, K. E., Jonard, G., & Ziegler-Graff, V. (2002). P0 of Beet Western Yellows Virus Is a Suppressor of Posttranscriptional Gene Silencing. Journal of Virology, 76(13), 6815-6824. doi:10.1128/jvi.76.13.6815-6824.2002 es_ES
dc.description.references Pisacane, P., & Halic, M. (2017). Tailing and degradation of Argonaute-bound small RNAs protect the genome from uncontrolled RNAi. Nature Communications, 8(1). doi:10.1038/ncomms15332 es_ES
dc.description.references Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions®, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879 es_ES
dc.description.references Pumplin, N., & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 11(11), 745-760. doi:10.1038/nrmicro3120 es_ES
dc.description.references Qu, F., & Morris, T. J. (2005). Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Letters, 579(26), 5958-5964. doi:10.1016/j.febslet.2005.08.041 es_ES
dc.description.references Rodamilans, B., Valli, A., Mingot, A., San León, D., López-Moya, J. J., & García, J. A. (2018). An atypical RNA silencing suppression strategy provides a snapshot of the evolution of sweet potato-infecting potyviruses. Scientific Reports, 8(1). doi:10.1038/s41598-018-34358-y es_ES
dc.description.references Roth, B. (2004). Plant viral suppressors of RNA silencing. Virus Research, 102(1), 97-108. doi:10.1016/j.virusres.2004.01.020 es_ES
dc.description.references Roy, A., Stone, A., Otero-Colina, G., Wei, G., Choudhary, N., Achor, D., … Brlansky, R. H. (2013). Genome Assembly of Citrus Leprosis Virus Nuclear Type Reveals a Close Association with Orchid Fleck Virus. Genome Announcements, 1(4). doi:10.1128/genomea.00519-13 es_ES
dc.description.references Samuel, G. H., Wiley, M. R., Badawi, A., Adelman, Z. N., & Myles, K. M. (2016). Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proceedings of the National Academy of Sciences, 113(48), 13863-13868. doi:10.1073/pnas.1600544113 es_ES
dc.description.references Sanchez-Navarro, J., Miglino, R., Ragozzino, A., & Bol, J. F. (2001). Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. Archives of Virology, 146(5), 923-939. doi:10.1007/s007050170125 es_ES
dc.description.references Silhavy, D. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. The EMBO Journal, 21(12), 3070-3080. doi:10.1093/emboj/cdf312 es_ES
dc.description.references Taschner, P. E. M., Van Der Kuyl, A. C., Neeleman, L., & Bol, J. F. (1991). Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology, 181(2), 445-450. doi:10.1016/0042-6822(91)90876-d es_ES
dc.description.references Thomas, C. L., Leh, V., Lederer, C., & Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana. Virology, 306(1), 33-41. doi:10.1016/s0042-6822(02)00018-1 es_ES
dc.description.references Van Dun, C. M. P., Van Vloten-Doting, L., & Bol, J. F. (1988). Expression of alfalfa mosaic virus cDNA1 and 2 in transgenic Tobacco plants. Virology, 163(2), 572-578. doi:10.1016/0042-6822(88)90298-x es_ES
dc.description.references Vanitharani, R., Chellappan, P., Pita, J. S., & Fauquet, C. M. (2004). Differential Roles of AC2 and AC4 of Cassava Geminiviruses in Mediating Synergism and Suppression of Posttranscriptional Gene Silencing. Journal of Virology, 78(17), 9487-9498. doi:10.1128/jvi.78.17.9487-9498.2004 es_ES
dc.description.references Voinnet, O., Lederer, C., & Baulcombe, D. C. (2000). A Viral Movement Protein Prevents Spread of the Gene Silencing Signal in Nicotiana benthamiana. Cell, 103(1), 157-167. doi:10.1016/s0092-8674(00)00095-7 es_ES
dc.description.references Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences, 96(24), 14147-14152. doi:10.1073/pnas.96.24.14147 es_ES
dc.description.references Voinnet, O., Vain, P., Angell, S., & Baulcombe, D. C. (1998). Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA. Cell, 95(2), 177-187. doi:10.1016/s0092-8674(00)81749-3 es_ES
dc.description.references Vuorinen, A. L., Kelloniemi, J., & Valkonen, J. P. T. (2011). Why do viruses need phloem for systemic invasion of plants? Plant Science, 181(4), 355-363. doi:10.1016/j.plantsci.2011.06.008 es_ES
dc.description.references Yaegashi, H., Isogai, M., & Yoshikawa, N. (2012). Characterization of Plant Virus-Encoded Gene Silencing Suppressors. Antiviral Resistance in Plants, 113-122. doi:10.1007/978-1-61779-882-5_8 es_ES
dc.description.references Yang, X., Ren, Y., Sun, S., Wang, D., Zhang, F., Li, D., … Zhou, X. (2018). Identification of the Potential Virulence Factors and RNA Silencing Suppressors of Mulberry Mosaic Dwarf-Associated Geminivirus. Viruses, 10(9), 472. doi:10.3390/v10090472 es_ES
dc.description.references Yelina, N. E., Savenkov, E. I., Solovyev, A. G., Morozov, S. Y., & Valkonen, J. P. T. (2002). Long-Distance Movement, Virulence, and RNA Silencing Suppression Controlled by a Single Protein in Hordei- and Potyviruses: Complementary Functions between Virus Families. Journal of Virology, 76(24), 12981-12991. doi:10.1128/jvi.76.24.12981-12991.2002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem