Mostrar el registro sencillo del ítem
dc.contributor.author | León-Martínez, Vicente | es_ES |
dc.contributor.author | Montañana-Romeu, Joaquín | es_ES |
dc.contributor.author | Peñalvo-López, Elisa | es_ES |
dc.contributor.author | Álvarez, Carlos | es_ES |
dc.date.accessioned | 2021-05-08T03:30:53Z | |
dc.date.available | 2021-05-08T03:30:53Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166074 | |
dc.description.abstract | [EN] The phenomenon responsible for the different apparent powers measured in a subsystem of a three-phase star-configured system, based on the voltage reference point, was identified in this paper using specific components of the instantaneous powers, as a result of applying the conservation of energy principle to the entire system. The effects of the phenomenon were determined using a proposed apparent power component referred to as the neutral-displacement power, whose square is the quadratic difference between the apparent powers of a subsystem, measured using two voltage reference points. The neutral-displacement power is a component of the apparent power, which is determined using the values of the zero-sequence voltages and the line currents in that subsystem. Expressions of the proposed power were derived using the Buchholz apparent power formulations. The validation of the derived expressions was checked in the laboratory and in a real-world electrical network, using a well-known commercial analyzer and a prototype developed by the authors. | es_ES |
dc.description.sponsorship | This research was funded by Universidad Politecnica de Valencia, under grant Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Apparent power | es_ES |
dc.subject | Power measurement | es_ES |
dc.subject | Instrumentation | es_ES |
dc.subject | Neutral-displacement power | es_ES |
dc.subject | Neutral-point displacement voltage | es_ES |
dc.subject | Power system | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.3390/app10031036 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180248/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | León-Martínez, V.; Montañana-Romeu, J.; Peñalvo-López, E.; Álvarez, C. (2020). Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems. Applied Sciences. 10(3):1-22. https://doi.org/10.3390/app10031036 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | IEEE International Conference on Applied System Innovation (IEEE ICASI 2018) | es_ES |
dc.relation.conferencedate | Abril 13-17,2018 | es_ES |
dc.relation.conferenceplace | Tokyo, Japan | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10031036 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\402065 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Emanuel, A. E., & Orr, J. A. (s. f.). The effect of neutral path impedance on voltage and current distortion. Part I. symmetrical and balanced three-phase systems. 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951). doi:10.1109/ichqp.2004.1409351 | es_ES |
dc.description.references | Emanuel, A. E., & Orr, J. A. (s. f.). The effect of neutral path impedance on voltage and current distortion. Part II. Imbalanced three-phase systems. 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951). doi:10.1109/ichqp.2004.1409350 | es_ES |
dc.description.references | Boyajian, A., & McCarty, O. P. (1931). Physical Nature of Neutral Instability. Transactions of the American Institute of Electrical Engineers, 50(1), 317-327. doi:10.1109/t-aiee.1931.5055789 | es_ES |
dc.description.references | Gates, B. G. (1936). Neutral inversion in power systems. Journal of the Institution of Electrical Engineers, 78(471), 317-325. doi:10.1049/jiee-1.1936.0051 | es_ES |
dc.description.references | Clarke, E., Crary, S. B., & Peterson, H. A. (1939). Overvoltages During Power-System Faults. Transactions of the American Institute of Electrical Engineers, 58(8), 377-385. doi:10.1109/t-aiee.1939.5057977 | es_ES |
dc.description.references | Concordia, C., & Peterson, H. A. (1941). Arcing faults in power systems. Electrical Engineering, 60(6), 340-346. doi:10.1109/ee.1941.6432165 | es_ES |
dc.description.references | Mortlock, J. R., & Dobson, C. M. (1947). Neutral earthing of three-phase systems, with particular reference to large power stations. Journal of the Institution of Electrical Engineers - Part II: Power Engineering, 94(42), 549-568. doi:10.1049/ji-2.1947.0152 | es_ES |
dc.description.references | Rocha, A. C. O., Souza, W. M., & Mendes, J. C. (s. f.). Practical experiences in the analysis of abnormal voltages due to neutral instability. 2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956). doi:10.1109/tdc.2004.1432511 | es_ES |
dc.description.references | Raunig, C., Schmautzer, E., Fickert, L., Achleitner, G., & Obkircher, C. (2009). Displacement voltages in resonant grounded grids caused by capacitive coupling. IET Conference Publications. doi:10.1049/cp.2009.0692 | es_ES |
dc.description.references | Konotop, I., Novitskiy, A., & Westermann, D. (2014). Constraints on the use of local compensation for the correction of neutral voltage displacement caused by the influence of nearby power lines. 2014 Electric Power Quality and Supply Reliability Conference (PQ). doi:10.1109/pq.2014.6866832 | es_ES |
dc.description.references | Kai, L., Guojie, X., Xiaojing, G., Kun, Y., Duohong, C., Ran, L., … Xiangjun, Z. (2018). Method for Suppressing Neutral Point Displacement Overvoltage and Suppression Circuit in Distribution Network. 2018 China International Conference on Electricity Distribution (CICED). doi:10.1109/ciced.2018.8592153 | es_ES |
dc.description.references | Harner, R., & Owen, R. (1971). Neutral Displacement of Ungrounded Capacitor Banks During Switching. IEEE Transactions on Power Apparatus and Systems, PAS-90(4), 1631-1638. doi:10.1109/tpas.1971.293151 | es_ES |
dc.description.references | Jinglu, L., Xin, W., & Chunyan, S. (2006). Discussion on Abnormal Rise of Displacement Voltage of Neutral Point in Compensation Electric Network and its Control Measures. 2006 International Conference on Power System Technology. doi:10.1109/icpst.2006.321700 | es_ES |
dc.description.references | Emanuel, A. E. (2010). Power Definitions and the Physical Mechanism of Power Flow. doi:10.1002/9780470667149 | es_ES |
dc.description.references | Czarnecki, L. S. (1988). Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source. IEEE Transactions on Instrumentation and Measurement, 37(1), 30-34. doi:10.1109/19.2658 | es_ES |
dc.description.references | Hyosung Kim, Blaabjerg, F., & Bak-Jensen, B. (2002). Spectral analysis of instantaneous powers in single-phase and three-phase systems with use of p-q-r theory. IEEE Transactions on Power Electronics, 17(5), 711-720. doi:10.1109/tpel.2002.802188 | es_ES |
dc.description.references | Willems, J. L., Ghijselen, J. A., & Emanuel, A. E. (2005). The Apparent Power Concept and the IEEE Standard 1459-2000. IEEE Transactions on Power Delivery, 20(2), 876-884. doi:10.1109/tpwrd.2005.844267 | es_ES |
dc.description.references | Fortescue, C. L. (1918). Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks. Transactions of the American Institute of Electrical Engineers, XXXVII(2), 1027-1140. doi:10.1109/t-aiee.1918.4765570 | es_ES |
dc.description.references | Chroma Programmable AC Power Source 61700 https://www.chromausa.com/product/3-phase-programmable-ac-source-61700/ | es_ES |
dc.description.references | Processor Board PCM-9581 http://advdownload.advantech.com/productfile/Downloadfile4/1-124ET90/PCM-9581_user_manual_Ed2.pdf | es_ES |
dc.description.references | Data Acquisition Board PCI-6220 https://www.ni.com/documentation/en/multifunction-io-device/latest/pci-6220/overview/ | es_ES |
dc.description.references | Voltage Transducer LV 25-P https://www.lem.com/en/lv-25p | es_ES |
dc.description.references | AC Current Clamp i5sPQ3 https://www.fluke.com/es-es/producto/accesorios/pinzas-de-corriente/fluke-i5spq3 | es_ES |
dc.description.references | Resistances DL1017R https://www.delorenzoglobal.com/image/power-engineering-modules.pdf | es_ES |