- -

Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author León-Martínez, Vicente es_ES
dc.contributor.author Montañana-Romeu, Joaquín es_ES
dc.contributor.author Peñalvo-López, Elisa es_ES
dc.contributor.author Álvarez, Carlos es_ES
dc.date.accessioned 2021-05-08T03:30:53Z
dc.date.available 2021-05-08T03:30:53Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166074
dc.description.abstract [EN] The phenomenon responsible for the different apparent powers measured in a subsystem of a three-phase star-configured system, based on the voltage reference point, was identified in this paper using specific components of the instantaneous powers, as a result of applying the conservation of energy principle to the entire system. The effects of the phenomenon were determined using a proposed apparent power component referred to as the neutral-displacement power, whose square is the quadratic difference between the apparent powers of a subsystem, measured using two voltage reference points. The neutral-displacement power is a component of the apparent power, which is determined using the values of the zero-sequence voltages and the line currents in that subsystem. Expressions of the proposed power were derived using the Buchholz apparent power formulations. The validation of the derived expressions was checked in the laboratory and in a real-world electrical network, using a well-known commercial analyzer and a prototype developed by the authors. es_ES
dc.description.sponsorship This research was funded by Universidad Politecnica de Valencia, under grant Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Apparent power es_ES
dc.subject Power measurement es_ES
dc.subject Instrumentation es_ES
dc.subject Neutral-displacement power es_ES
dc.subject Neutral-point displacement voltage es_ES
dc.subject Power system es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.3390/app10031036 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180248/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation León-Martínez, V.; Montañana-Romeu, J.; Peñalvo-López, E.; Álvarez, C. (2020). Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems. Applied Sciences. 10(3):1-22. https://doi.org/10.3390/app10031036 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename IEEE International Conference on Applied System Innovation (IEEE ICASI 2018) es_ES
dc.relation.conferencedate Abril 13-17,2018 es_ES
dc.relation.conferenceplace Tokyo, Japan es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10031036 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\402065 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Emanuel, A. E., & Orr, J. A. (s. f.). The effect of neutral path impedance on voltage and current distortion. Part I. symmetrical and balanced three-phase systems. 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951). doi:10.1109/ichqp.2004.1409351 es_ES
dc.description.references Emanuel, A. E., & Orr, J. A. (s. f.). The effect of neutral path impedance on voltage and current distortion. Part II. Imbalanced three-phase systems. 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951). doi:10.1109/ichqp.2004.1409350 es_ES
dc.description.references Boyajian, A., & McCarty, O. P. (1931). Physical Nature of Neutral Instability. Transactions of the American Institute of Electrical Engineers, 50(1), 317-327. doi:10.1109/t-aiee.1931.5055789 es_ES
dc.description.references Gates, B. G. (1936). Neutral inversion in power systems. Journal of the Institution of Electrical Engineers, 78(471), 317-325. doi:10.1049/jiee-1.1936.0051 es_ES
dc.description.references Clarke, E., Crary, S. B., & Peterson, H. A. (1939). Overvoltages During Power-System Faults. Transactions of the American Institute of Electrical Engineers, 58(8), 377-385. doi:10.1109/t-aiee.1939.5057977 es_ES
dc.description.references Concordia, C., & Peterson, H. A. (1941). Arcing faults in power systems. Electrical Engineering, 60(6), 340-346. doi:10.1109/ee.1941.6432165 es_ES
dc.description.references Mortlock, J. R., & Dobson, C. M. (1947). Neutral earthing of three-phase systems, with particular reference to large power stations. Journal of the Institution of Electrical Engineers - Part II: Power Engineering, 94(42), 549-568. doi:10.1049/ji-2.1947.0152 es_ES
dc.description.references Rocha, A. C. O., Souza, W. M., & Mendes, J. C. (s. f.). Practical experiences in the analysis of abnormal voltages due to neutral instability. 2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956). doi:10.1109/tdc.2004.1432511 es_ES
dc.description.references Raunig, C., Schmautzer, E., Fickert, L., Achleitner, G., & Obkircher, C. (2009). Displacement voltages in resonant grounded grids caused by capacitive coupling. IET Conference Publications. doi:10.1049/cp.2009.0692 es_ES
dc.description.references Konotop, I., Novitskiy, A., & Westermann, D. (2014). Constraints on the use of local compensation for the correction of neutral voltage displacement caused by the influence of nearby power lines. 2014 Electric Power Quality and Supply Reliability Conference (PQ). doi:10.1109/pq.2014.6866832 es_ES
dc.description.references Kai, L., Guojie, X., Xiaojing, G., Kun, Y., Duohong, C., Ran, L., … Xiangjun, Z. (2018). Method for Suppressing Neutral Point Displacement Overvoltage and Suppression Circuit in Distribution Network. 2018 China International Conference on Electricity Distribution (CICED). doi:10.1109/ciced.2018.8592153 es_ES
dc.description.references Harner, R., & Owen, R. (1971). Neutral Displacement of Ungrounded Capacitor Banks During Switching. IEEE Transactions on Power Apparatus and Systems, PAS-90(4), 1631-1638. doi:10.1109/tpas.1971.293151 es_ES
dc.description.references Jinglu, L., Xin, W., & Chunyan, S. (2006). Discussion on Abnormal Rise of Displacement Voltage of Neutral Point in Compensation Electric Network and its Control Measures. 2006 International Conference on Power System Technology. doi:10.1109/icpst.2006.321700 es_ES
dc.description.references Emanuel, A. E. (2010). Power Definitions and the Physical Mechanism of Power Flow. doi:10.1002/9780470667149 es_ES
dc.description.references Czarnecki, L. S. (1988). Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source. IEEE Transactions on Instrumentation and Measurement, 37(1), 30-34. doi:10.1109/19.2658 es_ES
dc.description.references Hyosung Kim, Blaabjerg, F., & Bak-Jensen, B. (2002). Spectral analysis of instantaneous powers in single-phase and three-phase systems with use of p-q-r theory. IEEE Transactions on Power Electronics, 17(5), 711-720. doi:10.1109/tpel.2002.802188 es_ES
dc.description.references Willems, J. L., Ghijselen, J. A., & Emanuel, A. E. (2005). The Apparent Power Concept and the IEEE Standard 1459-2000. IEEE Transactions on Power Delivery, 20(2), 876-884. doi:10.1109/tpwrd.2005.844267 es_ES
dc.description.references Fortescue, C. L. (1918). Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks. Transactions of the American Institute of Electrical Engineers, XXXVII(2), 1027-1140. doi:10.1109/t-aiee.1918.4765570 es_ES
dc.description.references Chroma Programmable AC Power Source 61700 https://www.chromausa.com/product/3-phase-programmable-ac-source-61700/ es_ES
dc.description.references Processor Board PCM-9581 http://advdownload.advantech.com/productfile/Downloadfile4/1-124ET90/PCM-9581_user_manual_Ed2.pdf es_ES
dc.description.references Data Acquisition Board PCI-6220 https://www.ni.com/documentation/en/multifunction-io-device/latest/pci-6220/overview/ es_ES
dc.description.references Voltage Transducer LV 25-P https://www.lem.com/en/lv-25p es_ES
dc.description.references AC Current Clamp i5sPQ3 https://www.fluke.com/es-es/producto/accesorios/pinzas-de-corriente/fluke-i5spq3 es_ES
dc.description.references Resistances DL1017R https://www.delorenzoglobal.com/image/power-engineering-modules.pdf es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem