Mostrar el registro sencillo del ítem
dc.contributor.author | Peñalvo-López, Elisa | es_ES |
dc.contributor.author | Cárcel Carrasco, Francisco Javier | es_ES |
dc.contributor.author | Alfonso-Solar, David | es_ES |
dc.contributor.author | Valencia-Salazar, Iván | es_ES |
dc.contributor.author | Hurtado-Perez, Elias | es_ES |
dc.date.accessioned | 2021-05-08T03:31:10Z | |
dc.date.available | 2021-05-08T03:31:10Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166076 | |
dc.description.abstract | [EN] Rooftop gardens ona building have proved to be a good way to improve its storm water management, but many other benefits can be obtained from the installation of these systems, such as reduction of energy consumption, decrease of the heat stress, abatement on CO2 emissions, etc. In this paper, the effect from the presence of these rooftop gardens on abuilding's energy consumption has been investigated by experimental campaigns using a green roof ona public building in a Mediterranean location in Spain. The obtained results demonstrate a substantial improvement by the installation of the green roof onthe building's cooling energy demand for a standard summer day, in the order of 30%, and a reduction, about 15%, in the heating energy demand for a winter day. Thus, given the longer duration of the summer conditions along the year, a noticeable reduction on energy demand could be obtained. Simulation analysis, using commercial software TRNSYS code, previously calibrated using experimental data for typical summer and winter days, allows for the extrapolation to the entire year of these results deducing noticeable improvement in energy efficiency, in the order of 19%, but with an increase of 6% in the peak power during the winter period. | es_ES |
dc.description.sponsorship | This work was supported by the European Union's Horizon 2020 research and innovation programme under the project Green Cities for Climate and Water Resilience, Sustainable Economic Growth, Healthy Citizens and Environments with reference 730283. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Green roofs | es_ES |
dc.subject | Buildings | es_ES |
dc.subject | Air conditioning | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject | Mediterranean area | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Study of the Improvement on Energy Efficiency for a Building in the Mediterranean Area by the Installation of a Green Roof System | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en13051246 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/730283/EU/Green Cities for Climate and Water Resilience, Sustainable Economic Growth, Healthy Citizens and Environments/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Peñalvo-López, E.; Cárcel Carrasco, FJ.; Alfonso-Solar, D.; Valencia-Salazar, I.; Hurtado-Perez, E. (2020). Study of the Improvement on Energy Efficiency for a Building in the Mediterranean Area by the Installation of a Green Roof System. Energies. 13(5):1-14. https://doi.org/10.3390/en13051246 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en13051246 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\404949 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Jim, C. Y. (2017). Green roof evolution through exemplars: Germinal prototypes to modern variants. Sustainable Cities and Society, 35, 69-82. doi:10.1016/j.scs.2017.08.001 | es_ES |
dc.description.references | Dos Santos, S. M., Silva, J. F. F., dos Santos, G. C., de Macedo, P. M. T., & Gavazza, S. (2019). Integrating conventional and green roofs for mitigating thermal discomfort and water scarcity in urban areas. Journal of Cleaner Production, 219, 639-648. doi:10.1016/j.jclepro.2019.01.068 | es_ES |
dc.description.references | Ferrans, P., Rey, C., Pérez, G., Rodríguez, J., & Díaz-Granados, M. (2018). Effect of Green Roof Configuration and Hydrological Variables on Runoff Water Quantity and Quality. Water, 10(7), 960. doi:10.3390/w10070960 | es_ES |
dc.description.references | Gómez, F., Valcuende, M., Matzarakis, A., & Cárcel, J. (2018). Design of natural elements in open spaces of cities with a Mediterranean climate, conditions for comfort and urban ecology. Environmental Science and Pollution Research, 25(26), 26643-26652. doi:10.1007/s11356-018-2736-1 | es_ES |
dc.description.references | Chen, X., Shuai, C., Chen, Z., & Zhang, Y. (2019). What are the root causes hindering the implementation of green roofs in urban China? Science of The Total Environment, 654, 742-750. doi:10.1016/j.scitotenv.2018.11.051 | es_ES |
dc.description.references | Radhi, H., Sharples, S., Taleb, H., & Fahmy, M. (2017). Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain. Energy and Buildings, 135, 324-337. doi:10.1016/j.enbuild.2016.11.048 | es_ES |
dc.description.references | Baik, J.-J., Kwak, K.-H., Park, S.-B., & Ryu, Y.-H. (2012). Effects of building roof greening on air quality in street canyons. Atmospheric Environment, 61, 48-55. doi:10.1016/j.atmosenv.2012.06.076 | es_ES |
dc.description.references | Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90, 757-773. doi:10.1016/j.rser.2018.04.006 | es_ES |
dc.description.references | Goussous, J., Siam, H., & Alzoubi, H. (2015). Prospects of green roof technology for energy and thermal benefits in buildings: Case of Jordan. Sustainable Cities and Society, 14, 425-440. doi:10.1016/j.scs.2014.05.012 | es_ES |
dc.description.references | Yang, W., Wang, Z., Cui, J., Zhu, Z., & Zhao, X. (2015). Comparative study of the thermal performance of the novel green (planting) roofs against other existing roofs. Sustainable Cities and Society, 16, 1-12. doi:10.1016/j.scs.2015.01.002 | es_ES |
dc.description.references | Foustalieraki, M., Assimakopoulos, M. N., Santamouris, M., & Pangalou, H. (2017). Energy performance of a medium scale green roof system installed on a commercial building using numerical and experimental data recorded during the cold period of the year. Energy and Buildings, 135, 33-38. doi:10.1016/j.enbuild.2016.10.056 | es_ES |
dc.description.references | Santamouris, M., Pavlou, C., Doukas, P., Mihalakakou, G., Synnefa, A., Hatzibiros, A., & Patargias, P. (2007). Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece. Energy, 32(9), 1781-1788. doi:10.1016/j.energy.2006.11.011 | es_ES |
dc.description.references | Zhao, X., Zuo, J., Wu, G., & Huang, C. (2018). A bibliometric review of green building research 2000–2016. Architectural Science Review, 62(1), 74-88. doi:10.1080/00038628.2018.1485548 | es_ES |
dc.description.references | Feng, C., Meng, Q., & Zhang, Y. (2010). Theoretical and experimental analysis of the energy balance of extensive green roofs. Energy and Buildings, 42(6), 959-965. doi:10.1016/j.enbuild.2009.12.014 | es_ES |
dc.description.references | Tang, X., & Qu, M. (2016). Phase change and thermal performance analysis for green roofs in cold climates. Energy and Buildings, 121, 165-175. doi:10.1016/j.enbuild.2016.03.069 | es_ES |
dc.description.references | Jim, C. Y., & Tsang, S. W. (2011). Ecological energetics of tropical intensive green roof. Energy and Buildings, 43(10), 2696-2704. doi:10.1016/j.enbuild.2011.06.018 | es_ES |
dc.description.references | Bevilacqua, P., Mazzeo, D., Bruno, R., & Arcuri, N. (2016). Experimental investigation of the thermal performances of an extensive green roof in the Mediterranean area. Energy and Buildings, 122, 63-79. doi:10.1016/j.enbuild.2016.03.062 | es_ES |
dc.description.references | Susca, T. (2019). Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 162, 106273. doi:10.1016/j.buildenv.2019.106273 | es_ES |
dc.description.references | Ávila-Hernández, A., Simá, E., Xamán, J., Hernández-Pérez, I., Téllez-Velázquez, E., & Chagolla-Aranda, M. A. (2020). Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico. Energy and Buildings, 209, 109709. doi:10.1016/j.enbuild.2019.109709 | es_ES |
dc.description.references | Tian, Z., Lei, Y., & Gu, X. (2017). Building Energy Impacts of Simple Green Roofs in the Hot Summer and Cold Winter Climate Zone: Suzhou as a Study Case. Procedia Engineering, 205, 2918-2924. doi:10.1016/j.proeng.2017.10.095 | es_ES |
dc.description.references | Coma, J., Pérez, G., Solé, C., Castell, A., & Cabeza, L. F. (2016). Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renewable Energy, 85, 1106-1115. doi:10.1016/j.renene.2015.07.074 | es_ES |