- -

Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Clairand, Jean-Michel es_ES
dc.contributor.author Álvarez, Carlos es_ES
dc.contributor.author Rodríguez-García, Javier es_ES
dc.contributor.author Escrivá-Escrivá, Guillermo es_ES
dc.date.accessioned 2021-05-08T03:31:13Z
dc.date.available 2021-05-08T03:31:13Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166077
dc.description.abstract [EN] Isolated microgrids, such as islands, rely on fossil fuels for electricity generation and include vehicle fleets, which poses significant environmental challenges. To address this, distributed energy resources based on renewable energy and electric vehicles (EVs) have been deployed in several places. However, they present operational and planning concerns. Hence, the aim of this paper is to propose a two-level microgrid problem. The first problem considers an EV charging strategy that minimizes charging costs and maximizes the renewable energy use. The second level evaluates the impact of this charging strategy on the power generation planning of Santa Cruz Island, Galapagos, Ecuador. This planning model is simulated in HOMER Energy. The results demonstrate the economic and environmental benefits of investing in additional photovoltaic (PV) generation and in the EV charging strategy. Investing in PV and smart charging for EVs could reduce the NPC by 13.58%, but a reduction in the NPC of the EV charging strategy would result in up to 3.12%. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Charging strategy es_ES
dc.subject Electric vehicle es_ES
dc.subject Microgrid es_ES
dc.subject Long-term planning es_ES
dc.subject PV generation es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13133455 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPS//6602277-01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Clairand, J.; Álvarez, C.; Rodríguez-García, J.; Escrivá-Escrivá, G. (2020). Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid. Energies. 13(13):1-18. https://doi.org/10.3390/en13133455 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13133455 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\417358 es_ES
dc.contributor.funder Universidad Politécnica Salesiana, Ecuador es_ES
dc.description.references Arriaga, M., Canizares, C. A., & Kazerani, M. (2013). Renewable Energy Alternatives for Remote Communities in Northern Ontario, Canada. IEEE Transactions on Sustainable Energy, 4(3), 661-670. doi:10.1109/tste.2012.2234154 es_ES
dc.description.references Eras-Almeida, A. A., & Egido-Aguilera, M. A. (2019). Hybrid renewable mini-grids on non-interconnected small islands: Review of case studies. Renewable and Sustainable Energy Reviews, 116, 109417. doi:10.1016/j.rser.2019.109417 es_ES
dc.description.references Mahmud, M. A. P., Huda, N., Farjana, S. H., & Lang, C. (2019). Techno-Economic Operation and Environmental Life-Cycle Assessment of a Solar PV-Driven Islanded Microgrid. IEEE Access, 7, 111828-111839. doi:10.1109/access.2019.2927653 es_ES
dc.description.references Huy, P. D., Ramachandaramurthy, V. K., Yong, J. Y., Tan, K. M., & Ekanayake, J. B. (2020). Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage. Energy, 195, 117011. doi:10.1016/j.energy.2020.117011 es_ES
dc.description.references Bahaj, A. S., & James, P. A. B. (2019). Electrical Minigrids for Development: Lessons From the Field. Proceedings of the IEEE, 107(9), 1967-1980. doi:10.1109/jproc.2019.2924594 es_ES
dc.description.references Nikmehr, N. (2020). Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs. Energy, 199, 117440. doi:10.1016/j.energy.2020.117440 es_ES
dc.description.references Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25(1), 371-380. doi:10.1109/tpwrs.2009.2036481 es_ES
dc.description.references Wang, G., Xu, Z., Wen, F., & Wong, K. P. (2013). Traffic-Constrained Multiobjective Planning of Electric-Vehicle Charging Stations. IEEE Transactions on Power Delivery, 28(4), 2363-2372. doi:10.1109/tpwrd.2013.2269142 es_ES
dc.description.references Rezaeimozafar, M., Eskandari, M., Amini, M. H., Moradi, M. H., & Siano, P. (2020). A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids. Energies, 13(7), 1706. doi:10.3390/en13071706 es_ES
dc.description.references Clairand, J.-M., Rodr韌uez-Garc韆, J., & 羖varez-Bel, C. (2020). Assessment of Technical and Economic Impacts of EV User Behavior on EV Aggregator Smart Charging. Journal of Modern Power Systems and Clean Energy, 8(2), 356-366. doi:10.35833/mpce.2018.000840 es_ES
dc.description.references Yang, H., Pan, H., Luo, F., Qiu, J., Deng, Y., Lai, M., & Dong, Z. Y. (2017). Operational Planning of Electric Vehicles for Balancing Wind Power and Load Fluctuations in a Microgrid. IEEE Transactions on Sustainable Energy, 8(2), 592-604. doi:10.1109/tste.2016.2613941 es_ES
dc.description.references Savio, D. A., Juliet, V. A., Chokkalingam, B., Padmanaban, S., Holm-Nielsen, J. B., & Blaabjerg, F. (2019). Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach. Energies, 12(1), 168. doi:10.3390/en12010168 es_ES
dc.description.references Jin, C., Sheng, X., & Ghosh, P. (2014). Optimized Electric Vehicle Charging With Intermittent Renewable Energy Sources. IEEE Journal of Selected Topics in Signal Processing, 8(6), 1063-1072. doi:10.1109/jstsp.2014.2336624 es_ES
dc.description.references Honarmand, M., Zakariazadeh, A., & Jadid, S. (2014). Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid. Energy Conversion and Management, 86, 745-755. doi:10.1016/j.enconman.2014.06.044 es_ES
dc.description.references Zhang, T., Chen, W., Han, Z., & Cao, Z. (2014). Charging Scheduling of Electric Vehicles With Local Renewable Energy Under Uncertain Electric Vehicle Arrival and Grid Power Price. IEEE Transactions on Vehicular Technology, 63(6), 2600-2612. doi:10.1109/tvt.2013.2295591 es_ES
dc.description.references Dhundhara, S., Verma, Y. P., & Williams, A. (2018). Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems. Energy Conversion and Management, 177, 122-142. doi:10.1016/j.enconman.2018.09.030 es_ES
dc.description.references Kumar, A., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2018). Multiyear Load Growth Based Techno-Financial Evaluation of a Microgrid for an Academic Institution. IEEE Access, 6, 37533-37555. doi:10.1109/access.2018.2849411 es_ES
dc.description.references Abdin, Z., & Mérida, W. (2019). Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and Management, 196, 1068-1079. doi:10.1016/j.enconman.2019.06.068 es_ES
dc.description.references Hafez, O., & Bhattacharya, K. (2012). Optimal planning and design of a renewable energy based supply system for microgrids. Renewable Energy, 45, 7-15. doi:10.1016/j.renene.2012.01.087 es_ES
dc.description.references Chade, D., Miklis, T., & Dvorak, D. (2015). Feasibility study of wind-to-hydrogen system for Arctic remote locations – Grimsey island case study. Renewable Energy, 76, 204-211. doi:10.1016/j.renene.2014.11.023 es_ES
dc.description.references Abo-Elyousr, F. K., & Elnozahy, A. (2018). Bi-objective economic feasibility of hybrid micro-grid systems with multiple fuel options for islanded areas in Egypt. Renewable Energy, 128, 37-56. doi:10.1016/j.renene.2018.05.066 es_ES
dc.description.references Das, I., & Canizares, C. A. (2019). Renewable Energy Integration in Diesel-Based Microgrids at the Canadian Arctic. Proceedings of the IEEE, 107(9), 1838-1856. doi:10.1109/jproc.2019.2932743 es_ES
dc.description.references Ayodele, E., Misra, S., Damasevicius, R., & Maskeliunas, R. (2019). Hybrid microgrid for microfinance institutions in rural areas – A field demonstration in West Africa. Sustainable Energy Technologies and Assessments, 35, 89-97. doi:10.1016/j.seta.2019.06.009 es_ES
dc.description.references Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Mohammed, M. F., & Ramli, M. A. M. (2020). Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq. Energy, 191, 116591. doi:10.1016/j.energy.2019.116591 es_ES
dc.description.references Elkadeem, M. R., Wang, S., Azmy, A. M., Atiya, E. G., Ullah, Z., & Sharshir, S. W. (2020). A systematic decision-making approach for planning and assessment of hybrid renewable energy-based microgrid with techno-economic optimization: A case study on an urban community in Egypt. Sustainable Cities and Society, 54, 102013. doi:10.1016/j.scs.2019.102013 es_ES
dc.description.references Jimenez Zabalaga, P., Cardozo, E., Choque Campero, L. A., & Araoz Ramos, J. A. (2020). Performance Analysis of a Stirling Engine Hybrid Power System. Energies, 13(4), 980. doi:10.3390/en13040980 es_ES
dc.description.references Masrur, H., Howlader, H. O. R., Elsayed Lotfy, M., Khan, K. R., Guerrero, J. M., & Senjyu, T. (2020). Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh. Sustainability, 12(7), 2880. doi:10.3390/su12072880 es_ES
dc.description.references Tuballa, M. L., & Abundo, M. L. (2018). Prospects of a solar-diesel-grid energy system for Silliman University, Dumaguete City, Philippines. International Journal of Green Energy, 15(12), 704-714. doi:10.1080/15435075.2018.1525555 es_ES
dc.description.references Adefarati, T., & Obikoya, G. . (2019). Techno-economic evaluation of a grid-connected microgrid system. International Journal of Green Energy, 16(15), 1497-1517. doi:10.1080/15435075.2019.1671421 es_ES
dc.description.references Donado, K., Navarro, L., Quintero M., C. G., & Pardo, M. (2019). HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems. Energies, 13(1), 26. doi:10.3390/en13010026 es_ES
dc.description.references Lombardi, F., Riva, F., Sacchi, M., & Colombo, E. (2019). Enabling combined access to electricity and clean cooking with PV-microgrids: new evidences from a high-resolution model of cooking loads. Energy for Sustainable Development, 49, 78-88. doi:10.1016/j.esd.2019.01.005 es_ES
dc.description.references Fulhu, M., Mohamed, M., & Krumdieck, S. (2019). Voluntary demand participation (VDP) for security of essential energy activities in remote communities with case study in Maldives. Energy for Sustainable Development, 49, 27-38. doi:10.1016/j.esd.2019.01.002 es_ES
dc.description.references He, L., Zhang, S., Chen, Y., Ren, L., & Li, J. (2018). Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China. Renewable and Sustainable Energy Reviews, 93, 631-641. doi:10.1016/j.rser.2018.05.053 es_ES
dc.description.references Veilleux, G., Potisat, T., Pezim, D., Ribback, C., Ling, J., Krysztofiński, A., … Chucherd, S. (2020). Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy for Sustainable Development, 54, 1-13. doi:10.1016/j.esd.2019.09.007 es_ES
dc.description.references Nnaji, E. C., Adgidzi, D., Dioha, M. O., Ewim, D. R. E., & Huan, Z. (2019). Modelling and management of smart microgrid for rural electrification in sub-saharan Africa: The case of Nigeria. The Electricity Journal, 32(10), 106672. doi:10.1016/j.tej.2019.106672 es_ES
dc.description.references Kovačević Markov, K., & Rajaković, N. (2019). Multi-energy microgrids with ecotourism purposes: The impact of the power market and the connection line. Energy Conversion and Management, 196, 1105-1112. doi:10.1016/j.enconman.2019.05.048 es_ES
dc.description.references Sarkar, T., Bhattacharjee, A., Samanta, H., Bhattacharya, K., & Saha, H. (2019). Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energy Conversion and Management, 191, 102-118. doi:10.1016/j.enconman.2019.04.025 es_ES
dc.description.references Clairand, J.-M., Arriaga, M., Canizares, C. A., & Alvarez-Bel, C. (2019). Power Generation Planning of Galapagos’ Microgrid Considering Electric Vehicles and Induction Stoves. IEEE Transactions on Sustainable Energy, 10(4), 1916-1926. doi:10.1109/tste.2018.2876059 es_ES
dc.description.references Hafez, O., & Bhattacharya, K. (2017). Optimal design of electric vehicle charging stations considering various energy resources. Renewable Energy, 107, 576-589. doi:10.1016/j.renene.2017.01.066 es_ES
dc.description.references Yoon, S.-G., & Kang, S.-G. (2017). Economic Microgrid Planning Algorithm with Electric Vehicle Charging Demands. Energies, 10(10), 1487. doi:10.3390/en10101487 es_ES
dc.description.references Eras-Almeida, A., Egido-Aguilera, M., Blechinger, P., Berendes, S., Caamaño, E., & García-Alcalde, E. (2020). Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz. Sustainability, 12(6), 2282. doi:10.3390/su12062282 es_ES
dc.description.references Clairand, J.-M., Rodríguez-García, J., & Álvarez-Bel, C. (2018). Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation. Energies, 11(11), 3188. doi:10.3390/en11113188 es_ES
dc.description.references Gamarra, C., & Guerrero, J. M. (2015). Computational optimization techniques applied to microgrids planning: A review. Renewable and Sustainable Energy Reviews, 48, 413-424. doi:10.1016/j.rser.2015.04.025 es_ES
dc.description.references HOMER Software https://www.homerenergy.com/ es_ES
dc.description.references Clairand Gómez, J. M. (s. f.). New strategies for the massive introduction of electric vehicles in the operation and planning of Smart Power Systems. doi:10.4995/thesis/10251/110971 es_ES
dc.description.references Pliego Tarifario Para Las Empresas Eléctricas. Technical Report https://www.cnelep.gob.ec/wp-content/uploads/2016/11/Pliego-Tarifarios-2016-Actualizado.pdf es_ES
dc.description.references Khayatian, A., Barati, M., & Lim, G. J. (2018). Integrated Microgrid Expansion Planning in Electricity Market With Uncertainty. IEEE Transactions on Power Systems, 33(4), 3634-3643. doi:10.1109/tpwrs.2017.2768302 es_ES
dc.description.references Z Electric Vehicle: The Performance and Value Leader in Electric Vehicles https://zelectricvehicle.in/ es_ES
dc.description.references K9 Electric Transit Bus https://en.byd.com/wp-content/uploads/2019/07/4504-byd-transit-cut-sheets_k9-40_lr.pdf es_ES
dc.description.references Kia Soul EV https://www.kia.com/worldwide/vehicles/e-soul.do es_ES
dc.description.references Iluminando al Patrimonio Natural de la Humanidad. Technical Report http://www.elecgalapagos.com.ec/pdf2015/M09/Revistainstitucional.pdf es_ES
dc.description.references Proyecto Eólico San Cristóbal Galápagos—Ecuador. Technical Report https://www.slideserve.com/peggy/proyecto-e-lico-san-crist-bal-islas-gal-pagos es_ES
dc.description.references Plan de Trabajo Anual—POA 2015. Technical Report http://www.elecgalapagos.com.ec/pdf2015/KO7/PlanOperativoAnual-POA.pdf es_ES
dc.description.references Sierra, J. C. (2016). Estimating road transport fuel consumption in Ecuador. Energy Policy, 92, 359-368. doi:10.1016/j.enpol.2016.02.008 es_ES
dc.description.references Registro Oficial. Technical Report 386 http://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2012/09/SPTMF_resol_carga_gye-galapagos.pdf es_ES
dc.description.references Proyectos http://www.elecgalapagos.com.ec/proyectos es_ES
dc.description.references Plan Galapagos. Technical Report http://extwprlegs1.fao.org/docs/pdf/ecu166016.pdf es_ES
dc.description.references Ficha Informativa de Proyecto 2016 Proyecto Fotovoltaico en la Isla Baltra—Archipiélago de Galápagos. Líder. Technical Report http://euroclimaplus.org/intranet/_documentos/repositorio/01Bienal%20ONUCambio%20Clim%C3%A1tico_2016Ecuador.pdf es_ES
dc.description.references The Wind Power. U57 https://www.thewindpower.net/turbine_media_en_460_unison_u57.php es_ES
dc.description.references Supporting the Energy Revolution https://www.vaisala.com/en/industries-innovation/renewable es_ES
dc.description.references Perspectiva y Expansión del Sistema Eléctrico Ecuatoriano, Technical Report http://www.regulacionelectrica.gob.ec/plan-maestro-de-electrificacion-2013-2022/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem