- -

ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Milhinhos, Ana es_ES
dc.contributor.author Bollhoner, Benjamin es_ES
dc.contributor.author BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL es_ES
dc.contributor.author Novak, Ondrej es_ES
dc.contributor.author Miguel, Celia M. es_ES
dc.contributor.author Tuominen, Hannele es_ES
dc.date.accessioned 2021-05-08T03:31:30Z
dc.date.available 2021-05-08T03:31:30Z
dc.date.issued 2020-11-16 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166082
dc.description.abstract [EN] In the primary root and young hypocotyl of Arabidopsis, ACAULIS5 promotes translation of SUPPRESSOR OF ACAULIS51 (SAC51) and thereby inhibits cytokinin biosynthesis and vascular cell division. In this study, the relationships between ACAULIS5, SAC51 and cytokinin biosynthesis were investigated during secondary growth of Populus stems. Overexpression of ACAULIS5 from the constitutive 35S promoter in hybrid aspen (Populus tremula x Populus tremuloides) trees suppressed the expression level of ACAULIS5, which resulted in low levels of the physiologically active cytokinin bases as well as their direct riboside precursors in the transgenic lines. Low ACAULIS5 expression and low cytokinin levels of the transgenic trees coincided with low cambial activity of the stem. ACAULIS5 therefore, contrary to its function in young seedlings in Arabidopsis, stimulates cytokinin accumulation and cambial activity during secondary growth of the stem. This function is not derived from maturing secondary xylem tissues as transgenic suppression of ACAULIS5 levels in these tissues did not influence secondary growth. Interestingly, evidence was obtained for increased activity of the anticlinal division of the cambial initials under conditions of low ACAULIS5 expression and low cytokinin accumulation. We propose that ACAULIS5 integrates auxin and cytokinin signaling to promote extensive secondary growth of tree stems. es_ES
dc.description.sponsorship This research was supported by the Swedish Research Council Formas (grant no. 232-2009-1698), the Swedish Research Council VR (grant no. 621-2013-4949), Vinnova (grant no. 201600504), Knut and Alice Wallenberg Foundation (grant no. 2016-0341), Fundacao para a Ciencia e Tecnologia (FCT), through CEEC/IND/00175/2017 contract to AM, FCT R&D Unit grants to GREEN-IT -Bioresources for Sustainability (grant no. UIDB/04551/2020), BioISI (grants nos. UIDB/04046/2020 and UIDP/04046/2020), the Spanish Ministry of Economy and Innovation (grant no. BFU2016-80621-P), and the Ministry of Education, Youth and Sports, Czech Republic through the European Regional Development Fund-Project "Plants as a Tool for Sustainable Global Development" (grant no. CZ.02.1.01/0.0/0.0/16_019/0000827). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ACAULIS5 es_ES
dc.subject Cytokinin es_ES
dc.subject POPACAULIS5 es_ES
dc.subject Polyamine es_ES
dc.subject Populus tremula x Populus tremuloides es_ES
dc.subject Thermospermine es_ES
dc.subject Wood development es_ES
dc.subject Xylem es_ES
dc.title ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2020.601858 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//CEEC%2FIND%2F00175%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSMT//CZ.02.1.01%2F0.0%2F0.0%2F16_019%2F0000827/CZ/Plants as a tool for sustainable global development/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//UIDB%2F04551%2F2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Swedish Research Council Formas//232-2009-1698/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/VR//621-2013-4949/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/VINNOVA//2016-00504/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Knut and Alice Wallenberg Foundation//2016-0341/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BioISI//UIDB%2F04046%2F2020/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Milhinhos, A.; Bollhoner, B.; Blazquez Rodriguez, MA.; Novak, O.; Miguel, CM.; Tuominen, H. (2020). ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees. Frontiers in Plant Science. 11:1-11. https://doi.org/10.3389/fpls.2020.601858 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2020.601858 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 33304375 es_ES
dc.identifier.pmcid PMC7701098 es_ES
dc.relation.pasarela S\433403 es_ES
dc.contributor.funder Swedish Research Council es_ES
dc.contributor.funder Ministry of Education, Youth and Sports, República Checa es_ES
dc.contributor.funder Swedish Research Council Formas es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Knut and Alice Wallenberg Foundation es_ES
dc.contributor.funder Swedish Governmental Agency for Innovation Systems es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder BioSystems and Integrative Sciences Institute, Portugal es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Agusti, J., Herold, S., Schwarz, M., Sanchez, P., Ljung, K., Dun, E. A., … Greb, T. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences, 108(50), 20242-20247. doi:10.1073/pnas.1111902108 es_ES
dc.description.references Antoniadi, I., Plačková, L., Simonovik, B., Doležal, K., Turnbull, C., Ljung, K., & Novák, O. (2015). Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex. The Plant Cell, 27(7), 1955-1967. doi:10.1105/tpc.15.00176 es_ES
dc.description.references Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051 es_ES
dc.description.references Bollhöner, B., Jokipii-Lukkari, S., Bygdell, J., Stael, S., Adriasola, M., Muñiz, L., … Tuominen, H. (2017). The function of two type II metacaspases in woody tissues of Populus trees. New Phytologist, 217(4), 1551-1565. doi:10.1111/nph.14945 es_ES
dc.description.references Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113-116. doi:10.1007/bf02670468 es_ES
dc.description.references Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756 es_ES
dc.description.references De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák, O., … Weijers, D. (2014). Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science, 345(6197). doi:10.1126/science.1255215 es_ES
dc.description.references Endo, S., Iwamoto, K., & Fukuda, H. (2017). Overexpression and cosuppression of xylem-related genes in an early xylem differentiation stage-specific manner by the AtTED4 promoter. Plant Biotechnology Journal, 16(2), 451-458. doi:10.1111/pbi.12784 es_ES
dc.description.references Etchells, J. P., Provost, C. M., & Turner, S. R. (2012). Plant Vascular Cell Division Is Maintained by an Interaction between PXY and Ethylene Signalling. PLoS Genetics, 8(11), e1002997. doi:10.1371/journal.pgen.1002997 es_ES
dc.description.references Fischer, U., Kucukoglu, M., Helariutta, Y., & Bhalerao, R. P. (2019). The Dynamics of Cambial Stem Cell Activity. Annual Review of Plant Biology, 70(1), 293-319. doi:10.1146/annurev-arplant-050718-100402 es_ES
dc.description.references Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.x es_ES
dc.description.references Hanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248 es_ES
dc.description.references Imai, A., Hanzawa, Y., Komura, M., Yamamoto, K. T., Komeda, Y., & Takahashi, T. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535 es_ES
dc.description.references Imai, A., Komura, M., Kawano, E., Kuwashiro, Y., & Takahashi, T. (2008). A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of theacl5mutant inArabidopsis thaliana. The Plant Journal, 56(6), 881-890. doi:10.1111/j.1365-313x.2008.03647.x es_ES
dc.description.references Immanen, J., Nieminen, K., Duchens Silva, H., Rodríguez Rojas, F., Meisel, L. A., Silva, H., … Helariutta, Y. (2013). Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica. BMC Genomics, 14(1). doi:10.1186/1471-2164-14-885 es_ES
dc.description.references Immanen, J., Nieminen, K., Smolander, O.-P., Kojima, M., Alonso Serra, J., Koskinen, P., … Helariutta, Y. (2016). Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Current Biology, 26(15), 1990-1997. doi:10.1016/j.cub.2016.05.053 es_ES
dc.description.references Kakehi, J.-I., Kawano, E., Yoshimoto, K., Cai, Q., Imai, A., & Takahashi, T. (2015). Mutations in Ribosomal Proteins, RPL4 and RACK1, Suppress the Phenotype of a Thermospermine-Deficient Mutant of Arabidopsis thaliana. PLOS ONE, 10(1), e0117309. doi:10.1371/journal.pone.0117309 es_ES
dc.description.references Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3 es_ES
dc.description.references Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074 es_ES
dc.description.references Koncz, C., & Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics MGG, 204(3), 383-396. doi:10.1007/bf00331014 es_ES
dc.description.references Larson, P. R. (1994). The Vascular Cambium. Springer Series in Wood Science. doi:10.1007/978-3-642-78466-8 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231 es_ES
dc.description.references Milhinhos, A., Vera-Sirera, F., Blanco-Touriñán, N., Mari-Carmona, C., Carrió-Seguí, À., Forment, J., … Agustí, J. (2019). SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proceedings of the National Academy of Sciences, 116(37), 18710-18716. doi:10.1073/pnas.1807863116 es_ES
dc.description.references Muñiz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349 es_ES
dc.description.references Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x es_ES
dc.description.references Nieminen, K., Immanen, J., Laxell, M., Kauppinen, L., Tarkowski, P., Dolezal, K., … Helariutta, Y. (2008). Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences, 105(50), 20032-20037. doi:10.1073/pnas.0805617106 es_ES
dc.description.references Nilsson, O., Aldén, T., Sitbon, F., Anthony Little, C. H., Chalupa, V., Sandberg, G., & Olsson, O. (1992). Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Research, 1(5), 209-220. doi:10.1007/bf02524751 es_ES
dc.description.references Ohashi-Ito, K., Saegusa, M., Iwamoto, K., Oda, Y., Katayama, H., Kojima, M., … Fukuda, H. (2014). A bHLH Complex Activates Vascular Cell Division via Cytokinin Action in Root Apical Meristem. Current Biology, 24(17), 2053-2058. doi:10.1016/j.cub.2014.07.050 es_ES
dc.description.references Ragni, L., Nieminen, K., Pacheco-Villalobos, D., Sibout, R., Schwechheimer, C., & Hardtke, C. S. (2011). Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion  . The Plant Cell, 23(4), 1322-1336. doi:10.1105/tpc.111.084020 es_ES
dc.description.references Savidge, R. A. (1988). Auxin and ethylene regulation of diameter growth in trees. Tree Physiology, 4(4), 401-414. doi:10.1093/treephys/4.4.401 es_ES
dc.description.references Sibout, R., Plantegenet, S., & Hardtke, C. S. (2008). Flowering as a Condition for Xylem Expansion in Arabidopsis Hypocotyl and Root. Current Biology, 18(6), 458-463. doi:10.1016/j.cub.2008.02.070 es_ES
dc.description.references Smetana, O., Mäkilä, R., Lyu, M., Amiryousefi, A., Sánchez Rodríguez, F., Wu, M.-F., … Mähönen, A. P. (2019). High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature, 565(7740), 485-489. doi:10.1038/s41586-018-0837-0 es_ES
dc.description.references Sundell, D., Street, N. R., Kumar, M., Mellerowicz, E. J., Kucukoglu, M., Johnsson, C., … Hvidsten, T. R. (2017). AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula. The Plant Cell, 29(7), 1585-1604. doi:10.1105/tpc.17.00153 es_ES
dc.description.references Svačinová, J., Novák, O., Plačková, L., Lenobel, R., Holík, J., Strnad, M., & Doležal, K. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods, 8(1). doi:10.1186/1746-4811-8-17 es_ES
dc.description.references Tiimonen, H., Häggman, H., Tsai, C.-J., Chiang, V., & Aronen, T. (2007). The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula Roth. Plant Cell Reports, 26(8), 1205-1214. doi:10.1007/s00299-007-0331-x es_ES
dc.description.references Tuominen, H., Puech, L., Fink, S., & Sundberg, B. (1997). A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen. Plant Physiology, 115(2), 577-585. doi:10.1104/pp.115.2.577 es_ES
dc.description.references Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022 es_ES
dc.description.references Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011 es_ES
dc.description.references Xu, M., Zhang, B., Su, X., Zhang, S., & Huang, M. (2011). Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Analytical Biochemistry, 408(2), 337-339. doi:10.1016/j.ab.2010.08.044 es_ES
dc.description.references Zürcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P. T., & Müller, B. (2013). A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta      . Plant Physiology, 161(3), 1066-1075. doi:10.1104/pp.112.211763 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem