- -

Power-aggregation of pseudometrics and the McShane-Whitney extension theorem for Lipschitz p-convace maps

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Power-aggregation of pseudometrics and the McShane-Whitney extension theorem for Lipschitz p-convace maps

Show full item record

Rodríguez López, J.; Sánchez Pérez, EA. (2020). Power-aggregation of pseudometrics and the McShane-Whitney extension theorem for Lipschitz p-convace maps. Acta Applicandae Mathematicae. 170:611-629. https://doi.org/10.1007/s10440-020-00349-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166134

Files in this item

Item Metadata

Title: Power-aggregation of pseudometrics and the McShane-Whitney extension theorem for Lipschitz p-convace maps
Author: Rodríguez López, Jesús Sánchez Pérez, Enrique Alfonso
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Given a countable set of families {Dk:k¿N} of pseudometrics over the same set D, we study the power-aggregations of this class, that are defined as convex combinations of integral averages of powers of the elements ...[+]
Subjects: Pseudometric , Aggregation , Lipschitz function , Extension , P-average
Copyrigths: Reserva de todos los derechos
Source:
Acta Applicandae Mathematicae. (issn: 0167-8019 )
DOI: 10.1007/s10440-020-00349-3
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10440-020-00349-3
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/
info:eu-repo/grantAgreement/MINECO//MTM2015-64373-P/ES/HIPERESPACIOS, ESTRUCTURAS DIFUSAS Y ASIMETRICAS. APLICACIONES A CIENCIA DE LA COMPUTACION Y AL FILTRADO DE IMAGENES./
Thanks:
Both authors gratefully acknowledge the support of the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigaciones and FEDER under each grants MTM2015-64373-P (MINECO/FEDER, UE) and MTM2016-77 ...[+]
Type: Artículo

References

Dahia, E., Achour, D., Rueda, P., Sánchez Pérez, E.A., Yahi, R.: Factorization of Lipschitz operators on Banach function spaces. Math. Inequal. Appl. 21(4), 1091–1104 (2018)

Beliakov, G.: Optimization and aggregation functions. In: Lodwick, W.A., Kacprzyk, J. (eds.) Fuzzy Optimization: Recent Advances and Applications, pp. 77–108. Springer, Berlin (2010)

Beliakov, G., Bustince Sola, H., Calvo Sánchez, T.: A Practical Guide to Averaging Functions, vol. 329. Springer, Heidelberg (2016) [+]
Dahia, E., Achour, D., Rueda, P., Sánchez Pérez, E.A., Yahi, R.: Factorization of Lipschitz operators on Banach function spaces. Math. Inequal. Appl. 21(4), 1091–1104 (2018)

Beliakov, G.: Optimization and aggregation functions. In: Lodwick, W.A., Kacprzyk, J. (eds.) Fuzzy Optimization: Recent Advances and Applications, pp. 77–108. Springer, Berlin (2010)

Beliakov, G., Bustince Sola, H., Calvo Sánchez, T.: A Practical Guide to Averaging Functions, vol. 329. Springer, Heidelberg (2016)

Botelho, G., Pellegrino, D., Rueda, P.: A unified Pietsch domination theorem. J. Math. Anal. Appl. 365(1), 269–276 (2010)

Botelho, G., Pellegrino, D., Rueda, P.: On Pietsch measures for summing operators and dominated polynomials. Linear Multilinear Algebra 62(7), 860–874 (2014)

Chávez-Domínguez, J.A.: Duality for Lipschitz p-summing operators. J. Funct. Anal. 261, 387–407 (2011)

Chávez-Domínguez, J.A.: Lipschitz $p$-convex and $q$-concave maps (2014). arXiv:1406.6357

Defant, A.: Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)

Defant, A., Floret, K.: Tensor Norms and Operator Ideals. Elsevier, Amsterdam (1992)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)

Dugundji, J.: Topology. Allyn and Bacon, Needham Heights (1966)

Farmer, J., Johnson, W.: Lipschitz $p$-summing operators. Proc. Am. Math. Soc. 137(9), 2989–2995 (2009)

Juutinen, P.: Absolutely minimizing Lipschitz extensions on a metric space. Ann. Acad. Sci. Fenn., Math. 27, 57–67 (2002)

Marler, T.R., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Struct. Multidiscip. Optim. 41(6), 853–862 (2010)

Mustata, C.: Extensions of semi-Lipschitz functions on quasi-metric spaces. Rev. Anal. Numér. Théor. Approx. 30(1), 61–67 (2001)

Mustata, C.: On the extremal semi-Lipschitz functions. Rev. Anal. Numér. Théor. Approx. 31(1), 103–108 (2002)

Pellegrino, D., Santos, J.: Absolutely summing multilinear operators: a panorama. Quaest. Math. 34(4), 447–478 (2011)

Romaguera, S., Sanchis, M.: Semi-Lipschitz functions and best approximation in quasi-metric spaces. J. Approx. Theory 103, 292–301 (2000)

Willard, S.: General Topology. Addison-Wesley, Reading (1970)

Yahi, R., Achour, D., Rueda, P.: Absolutely summing Lipschitz conjugates. Mediterr. J. Math. 13(4), 1949–1961 (2016)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record