- -

Spectrum of composition operators on S(R) with polynomial symbols

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spectrum of composition operators on S(R) with polynomial symbols

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández, Carmen es_ES
dc.contributor.author Galbis, Antonio es_ES
dc.contributor.author Jorda Mora, Enrique es_ES
dc.date.accessioned 2021-05-11T03:31:31Z
dc.date.available 2021-05-11T03:31:31Z
dc.date.issued 2020-05-13 es_ES
dc.identifier.issn 0001-8708 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166135
dc.description.abstract [EN] We study the spectrum of operators in the Schwartz space of rapidly decreasing functions which associate each function with its composition with a polynomial. In the case where this operator is mean ergodic we prove that its spectrum reduces to {0}, while the spectrum of any non mean ergodic composition operator with a polynomial always contains the closed unit disc except perhaps the origin. We obtain a complete description of the spectrum of the composition operator with a quadratic polynomial or a cubic polynomial with positive leading coefficient. es_ES
dc.description.sponsorship The present research was partially supported by the projects MTM2016-76647-P and Prometeo2017/102 (Spain). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Advances in Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Composition operator es_ES
dc.subject Space of rapidly decreasing functions es_ES
dc.subject Spectrum es_ES
dc.subject Mean ergodic operator es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Spectrum of composition operators on S(R) with polynomial symbols es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.aim.2020.107052 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Fernández, C.; Galbis, A.; Jorda Mora, E. (2020). Spectrum of composition operators on S(R) with polynomial symbols. Advances in Mathematics. 365:1-24. https://doi.org/10.1016/j.aim.2020.107052 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.aim.2020.107052 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 365 es_ES
dc.relation.pasarela S\420205 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaestiones Mathematicae, 36(2), 253-290. doi:10.2989/16073606.2013.779978 es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2016). Dynamics and spectrum of the Cesàro operator on $$C^\infty ({\mathbb R}_+)$$ C ∞ ( R + ). Monatshefte für Mathematik, 181(2), 267-283. doi:10.1007/s00605-015-0863-z es_ES
dc.description.references Bonet, J., & Domański, P. (2016). A Note on the Spectrum of Composition Operators on Spaces of Real Analytic Functions. Complex Analysis and Operator Theory, 11(1), 161-174. doi:10.1007/s11785-016-0589-5 es_ES
dc.description.references Bonet, J., Frerick, L., & Jordá, E. (2007). Extension of vector-valued holomorphic and harmonic functions. Studia Mathematica, 183(3), 225-248. doi:10.4064/sm183-3-2 es_ES
dc.description.references Fernández, C., Galbis, A., & Jordá, E. (2018). Dynamics and spectra of composition operators on the Schwartz space. Journal of Functional Analysis, 274(12), 3503-3530. doi:10.1016/j.jfa.2017.11.005 es_ES
dc.description.references Galbis, A., & Jordá, E. (2018). Composition operators on the Schwartz space. Revista Matemática Iberoamericana, 34(1), 397-412. doi:10.4171/rmi/989 es_ES
dc.description.references GROSSE-ERDMANN, K.-G. (2004). A weak criterion for vector-valued holomorphy. Mathematical Proceedings of the Cambridge Philosophical Society, 136(2), 399-411. doi:10.1017/s0305004103007254 es_ES
dc.description.references Kenessey, N., & Wengenroth, J. (2011). Composition operators with closed range for smooth injective symbols <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi mathvariant=«double-struck»>R</mml:mi><mml:mo>→</mml:mo><mml:msup><mml:mi mathvariant=«double-struck»>R</mml:mi><mml:mi>d</mml:mi></mml:msup></mml:math>. Journal of Functional Analysis, 260(10), 2997-3006. doi:10.1016/j.jfa.2011.01.019 es_ES
dc.description.references Przestacki, A. (2013). Composition operators with closed range for one-dimensional smooth symbols. Journal of Mathematical Analysis and Applications, 399(1), 225-228. doi:10.1016/j.jmaa.2012.10.009 es_ES
dc.description.references Przestacki, A. (2014). Characterization of composition operators with closed range for one-dimensional smooth symbols. Journal of Functional Analysis, 266(9), 5847-5857. doi:10.1016/j.jfa.2014.02.032 es_ES
dc.description.references Przestacki, A. (2017). Dynamical properties of weighted composition operators on the space of smooth functions. Journal of Mathematical Analysis and Applications, 445(1), 1097-1113. doi:10.1016/j.jmaa.2016.08.029 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem