- -

A Review on MAS-Based Sentiment and Stress Analysis User-Guiding and Risk-Prevention Systems in Social Network Analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Review on MAS-Based Sentiment and Stress Analysis User-Guiding and Risk-Prevention Systems in Social Network Analysis

Show full item record

Aguado-Sarrió, G.; Julian Inglada, VJ.; García-Fornes, A.; Espinosa Minguet, AR. (2020). A Review on MAS-Based Sentiment and Stress Analysis User-Guiding and Risk-Prevention Systems in Social Network Analysis. Applied Sciences. 10(19):1-29. https://doi.org/10.3390/app10196746

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166195

Files in this item

Item Metadata

Title: A Review on MAS-Based Sentiment and Stress Analysis User-Guiding and Risk-Prevention Systems in Social Network Analysis
Author: Aguado-Sarrió, Guillem Julian Inglada, Vicente Javier García-Fornes, A Espinosa Minguet, Agustín Rafael
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] In the current world we live immersed in online applications, being one of the most present of them Social Network Sites (SNSs), and different issues arise from this interaction. Therefore, there is a need for research ...[+]
Subjects: Multi-Agent System , Social networks , Sentiment analysis , Stress analysis
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10196746
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app10196746
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89156-R/ES/AGENTES INTELIGENTES PARA ASESORAR EN PRIVACIDAD EN REDES SOCIALES/
Thanks:
This work was funded by the project TIN2017-89156-R of the Spanish government.
Type: Artículo

References

Vanderhoven, E., Schellens, T., Vanderlinde, R., & Valcke, M. (2015). Developing educational materials about risks on social network sites: a design based research approach. Educational Technology Research and Development, 64(3), 459-480. doi:10.1007/s11423-015-9415-4

Teens and ICT: Risks and Opportunities. Belgium: TIRO http://www.belspo.be/belspo/fedra/proj.asp?l=en&COD=TA/00/08

Risks and Safety on the Internet: The Perspective of European Children: Full Findings and Policy Implications From the EU Kids Online Survey of 9–16 Year Olds and Their Parents in 25 Countries http://eprints.lse.ac.uk/33731/ [+]
Vanderhoven, E., Schellens, T., Vanderlinde, R., & Valcke, M. (2015). Developing educational materials about risks on social network sites: a design based research approach. Educational Technology Research and Development, 64(3), 459-480. doi:10.1007/s11423-015-9415-4

Teens and ICT: Risks and Opportunities. Belgium: TIRO http://www.belspo.be/belspo/fedra/proj.asp?l=en&COD=TA/00/08

Risks and Safety on the Internet: The Perspective of European Children: Full Findings and Policy Implications From the EU Kids Online Survey of 9–16 Year Olds and Their Parents in 25 Countries http://eprints.lse.ac.uk/33731/

Vanderhoven, E., Schellens, T., & Valcke, M. (2014). Educating teens about the risks on social network sites. An intervention study in Secondary Education. Comunicar, 22(43), 123-132. doi:10.3916/c43-2014-12

Christofides, E., Muise, A., & Desmarais, S. (2012). Risky Disclosures on Facebook. Journal of Adolescent Research, 27(6), 714-731. doi:10.1177/0743558411432635

George, J. M., & Dane, E. (2016). Affect, emotion, and decision making. Organizational Behavior and Human Decision Processes, 136, 47-55. doi:10.1016/j.obhdp.2016.06.004

Thelwall, M. (2017). TensiStrength: Stress and relaxation magnitude detection for social media texts. Information Processing & Management, 53(1), 106-121. doi:10.1016/j.ipm.2016.06.009

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558. doi:10.1002/asi.21416

Shoumy, N. J., Ang, L.-M., Seng, K. P., Rahaman, D. M. M., & Zia, T. (2020). Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals. Journal of Network and Computer Applications, 149, 102447. doi:10.1016/j.jnca.2019.102447

Zhang, C., Zeng, D., Li, J., Wang, F.-Y., & Zuo, W. (2009). Sentiment analysis of Chinese documents: From sentence to document level. Journal of the American Society for Information Science and Technology, 60(12), 2474-2487. doi:10.1002/asi.21206

Lu, B., Ott, M., Cardie, C., & Tsou, B. K. (2011). Multi-aspect Sentiment Analysis with Topic Models. 2011 IEEE 11th International Conference on Data Mining Workshops. doi:10.1109/icdmw.2011.125

Nasukawa, T., & Yi, J. (2003). Sentiment analysis. Proceedings of the international conference on Knowledge capture - K-CAP ’03. doi:10.1145/945645.945658

Borth, D., Ji, R., Chen, T., Breuel, T., & Chang, S.-F. (2013). Large-scale visual sentiment ontology and detectors using adjective noun pairs. Proceedings of the 21st ACM international conference on Multimedia - MM ’13. doi:10.1145/2502081.2502282

Deb, S., & Dandapat, S. (2019). Emotion Classification Using Segmentation of Vowel-Like and Non-Vowel-Like Regions. IEEE Transactions on Affective Computing, 10(3), 360-373. doi:10.1109/taffc.2017.2730187

Deng, J., Zhang, Z., Marchi, E., & Schuller, B. (2013). Sparse Autoencoder-Based Feature Transfer Learning for Speech Emotion Recognition. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. doi:10.1109/acii.2013.90

Nicolaou, M. A., Gunes, H., & Pantic, M. (2011). Continuous Prediction of Spontaneous Affect from Multiple Cues and Modalities in Valence-Arousal Space. IEEE Transactions on Affective Computing, 2(2), 92-105. doi:10.1109/t-affc.2011.9

Hossain, M. S., Muhammad, G., Alhamid, M. F., Song, B., & Al-Mutib, K. (2016). Audio-Visual Emotion Recognition Using Big Data Towards 5G. Mobile Networks and Applications, 21(5), 753-763. doi:10.1007/s11036-016-0685-9

Zhou, F., Jianxin Jiao, R., & Linsey, J. S. (2015). Latent Customer Needs Elicitation by Use Case Analogical Reasoning From Sentiment Analysis of Online Product Reviews. Journal of Mechanical Design, 137(7). doi:10.1115/1.4030159

Ceci, F., Goncalves, A. L., & Weber, R. (2016). A model for sentiment analysis based on ontology and cases. IEEE Latin America Transactions, 14(11), 4560-4566. doi:10.1109/tla.2016.7795829

Vizer, L. M., Zhou, L., & Sears, A. (2009). Automated stress detection using keystroke and linguistic features: An exploratory study. International Journal of Human-Computer Studies, 67(10), 870-886. doi:10.1016/j.ijhcs.2009.07.005

Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89. doi:10.1145/2436256.2436274

Schouten, K., & Frasincar, F. (2016). Survey on Aspect-Level Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813-830. doi:10.1109/tkde.2015.2485209

Ji, R., Cao, D., Zhou, Y., & Chen, F. (2016). Survey of visual sentiment prediction for social media analysis. Frontiers of Computer Science, 10(4), 602-611. doi:10.1007/s11704-016-5453-2

Li, L., Cao, D., Li, S., & Ji, R. (2015). Sentiment analysis of Chinese micro-blog based on multi-modal correlation model. 2015 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2015.7351718

Lee, P.-M., Tsui, W.-H., & Hsiao, T.-C. (2015). The Influence of Emotion on Keyboard Typing: An Experimental Study Using Auditory Stimuli. PLOS ONE, 10(6), e0129056. doi:10.1371/journal.pone.0129056

Matsiola, M., Dimoulas, C., Kalliris, G., & Veglis, A. A. (2018). Augmenting User Interaction Experience Through Embedded Multimodal Media Agents in Social Networks. Information Retrieval and Management, 1972-1993. doi:10.4018/978-1-5225-5191-1.ch088

Rosaci, D. (2007). CILIOS: Connectionist inductive learning and inter-ontology similarities for recommending information agents. Information Systems, 32(6), 793-825. doi:10.1016/j.is.2006.06.003

Buccafurri, F., Comi, A., Lax, G., & Rosaci, D. (2016). Experimenting with Certified Reputation in a Competitive Multi-Agent Scenario. IEEE Intelligent Systems, 31(1), 48-55. doi:10.1109/mis.2015.98

Rosaci, D., & Sarnè, G. M. L. (2014). Multi-agent technology and ontologies to support personalization in B2C E-Commerce. Electronic Commerce Research and Applications, 13(1), 13-23. doi:10.1016/j.elerap.2013.07.003

Singh, A., & Sharma, A. (2017). MAICBR: A Multi-agent Intelligent Content-Based Recommendation System. Lecture Notes in Networks and Systems, 399-411. doi:10.1007/978-981-10-3920-1_41

Villavicencio, C., Schiaffino, S., Diaz-Pace, J. A., Monteserin, A., Demazeau, Y., & Adam, C. (2016). A MAS Approach for Group Recommendation Based on Negotiation Techniques. Lecture Notes in Computer Science, 219-231. doi:10.1007/978-3-319-39324-7_19

Rincon, J. A., de la Prieta, F., Zanardini, D., Julian, V., & Carrascosa, C. (2017). Influencing over people with a social emotional model. Neurocomputing, 231, 47-54. doi:10.1016/j.neucom.2016.03.107

Aguado, G., Julian, V., Garcia-Fornes, A., & Espinosa, A. (2020). A Multi-Agent System for guiding users in on-line social environments. Engineering Applications of Artificial Intelligence, 94, 103740. doi:10.1016/j.engappai.2020.103740

Aguado, G., Julián, V., García-Fornes, A., & Espinosa, A. (2020). Using Keystroke Dynamics in a Multi-Agent System for User Guiding in Online Social Networks. Applied Sciences, 10(11), 3754. doi:10.3390/app10113754

Camara, M., Bonham-Carter, O., & Jumadinova, J. (2015). A multi-agent system with reinforcement learning agents for biomedical text mining. Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics. doi:10.1145/2808719.2812596

Lombardo, G., Fornacciari, P., Mordonini, M., Tomaiuolo, M., & Poggi, A. (2019). A Multi-Agent Architecture for Data Analysis. Future Internet, 11(2), 49. doi:10.3390/fi11020049

Schweitzer, F., & Garcia, D. (2010). An agent-based model of collective emotions in online communities. The European Physical Journal B, 77(4), 533-545. doi:10.1140/epjb/e2010-00292-1

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record