- -

Sound absorption and diffusion by 2D arrays of Helmholtz resonators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sound absorption and diffusion by 2D arrays of Helmholtz resonators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrero-Durá, Iván es_ES
dc.contributor.author Cebrecos, Alejandro es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author Romero-García, Vicente es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.contributor.author Sánchez Morcillo, Víctor José es_ES
dc.date.accessioned 2021-05-12T03:32:03Z
dc.date.available 2021-05-12T03:32:03Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166210
dc.description.abstract [EN] We report a theoretical and experimental study of an array of Helmholtz resonators optimized to achieve both efficient sound absorption and diffusion. The analysis starts with a simplified 1D model where the plane wave approximation is used to design an array of resonators showing perfect absorption for a targeted range of frequencies. The absorption is optimized by tuning the geometry of the resonators, i.e., by tuning the viscothermal losses of each element. Experiments with the 1D array were performed in an impedance tube. The designed system is extended to 2D by periodically replicating the 1D array. The 2D system has been numerically modeled and experimentally tested in an anechoic chamber. It preserves the absorption properties of the 1D system and introduces efficient diffusion at higher frequencies due to the joint effect of resonances and multiple scattering inside the discrete 2D structure. The combined effect of sound absorption at low frequencies and sound diffusion at higher frequencies, may play a relevant role in the design of noise reduction systems for different applications. es_ES
dc.description.sponsorship This research was funded by the European Space Agency under the Networking/Partnering Initiative (NPI) contract number 441-2015. In memoriam to Julián Santiago-Prowald, Senior Advisor for the Structures, Mechanisms and Materials Division of ESA, a great man that always gave us his tireless support. AC acknowledges financial support from Generalitat Valenciana through the grant APOSTD/2018/229. VRG acknowledges the financial support from RFI Le Mans Acoustique (Région Pays de la Loire) in the framework of the project HYPERMETA funded under the program Étoiles Montantes of the Région Pays de la Loire. Authors acknowledge the support of the European Space Agency under contract 441-2015 Co- Sponsored PhD ¿Acoustic Reduction Methods for the Launch Pad¿ and project TRP ESA AO/1-9479/18/NL/LvH ¿Launch Sound Level Reduction¿. This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sound absorption es_ES
dc.subject Sound diffusion es_ES
dc.subject Absorption coefficient es_ES
dc.subject Diffusion coefficient es_ES
dc.subject Helmholtz resonators es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Sound absorption and diffusion by 2D arrays of Helmholtz resonators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10051690 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ESA//2441-2015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F229/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Herrero-Durá, I.; Cebrecos, A.; Picó Vila, R.; Romero-García, V.; García-Raffi, LM.; Sánchez Morcillo, VJ. (2020). Sound absorption and diffusion by 2D arrays of Helmholtz resonators. Applied Sciences. 10(5):1-15. https://doi.org/10.3390/app10051690 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10051690 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\403561 es_ES
dc.contributor.funder European Space Agency es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Region Pays de la Loire es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 es_ES
dc.description.references Matlack, K. H., Bauhofer, A., Krödel, S., Palermo, A., & Daraio, C. (2016). Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proceedings of the National Academy of Sciences, 113(30), 8386-8390. doi:10.1073/pnas.1600171113 es_ES
dc.description.references Wormser, M., Wein, F., Stingl, M., & Körner, C. (2017). Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization. Materials, 10(10), 1125. doi:10.3390/ma10101125 es_ES
dc.description.references Lucklum, F., & Vellekoop, M. J. (2018). Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice. Applied Physics Letters, 113(20), 201902. doi:10.1063/1.5049663 es_ES
dc.description.references D’Alessandro, L., Ardito, R., Braghin, F., & Corigliano, A. (2019). Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial. Scientific Reports, 9(1). doi:10.1038/s41598-019-44507-6 es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Cebrecos, A., Krattiger, D., Sánchez-Morcillo, V. J., Romero-García, V., & Hussein, M. I. (2019). The finite-element time-domain method for elastic band-structure calculations. Computer Physics Communications, 238, 77-87. doi:10.1016/j.cpc.2018.12.016 es_ES
dc.description.references Cebrecos, A., Romero-García, V., & Groby, J. (2019). Complex Dispersion Relation Recovery from 2D Periodic Resonant Systems of Finite Size. Applied Sciences, 9(3), 478. doi:10.3390/app9030478 es_ES
dc.description.references Hussein, M. I., Leamy, M. J., & Ruzzene, M. (2014). Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook. Applied Mechanics Reviews, 66(4). doi:10.1115/1.4026911 es_ES
dc.description.references Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 es_ES
dc.description.references Martínez-Sala, R., Rubio, C., García-Raffi, L. M., Sánchez-Pérez, J. V., Sánchez-Pérez, E. A., & Llinares, J. (2006). Control of noise by trees arranged like sonic crystals. Journal of Sound and Vibration, 291(1-2), 100-106. doi:10.1016/j.jsv.2005.05.030 es_ES
dc.description.references Garcia-Raffi, L. M., Salmerón-Contreras, L. J., Herrero-Durá, I., Picó, R., Redondo, J., Sánchez-Morcillo, V. J., … Romero-García, V. (2018). Broadband reduction of the specular reflections by using sonic crystals: A proof of concept for noise mitigation in aerospace applications. Aerospace Science and Technology, 73, 300-308. doi:10.1016/j.ast.2017.11.048 es_ES
dc.description.references Sanchez-Perez, J. V., Castineira-Ibanez, S., Romero-Garcia, V., & Garcia-Raffi, L. M. (2015). PERIODIC SYSTEMS AS ROAD TRAFFIC NOISE REDUCING DEVICES: PROTOTYPE AND STANDARDIZATION. Environmental Engineering and Management Journal, 14(12), 2759-2769. doi:10.30638/eemj.2015.293 es_ES
dc.description.references Kandula, M. (2009). Broadband shock noise reduction in turbulent jets by water injection. Applied Acoustics, 70(7), 1009-1014. doi:10.1016/j.apacoust.2008.12.001 es_ES
dc.description.references Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 es_ES
dc.description.references Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 es_ES
dc.description.references Sugimoto, N., & Horioka, T. (1995). Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators. The Journal of the Acoustical Society of America, 97(3), 1446-1459. doi:10.1121/1.412085 es_ES
dc.description.references Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017 es_ES
dc.description.references Jiménez, N., Cox, T. J., Romero-García, V., & Groby, J.-P. (2017). Metadiffusers: Deep-subwavelength sound diffusers. Scientific Reports, 7(1). doi:10.1038/s41598-017-05710-5 es_ES
dc.description.references Ballestero, E., Jiménez, N., Groby, J.-P., Dance, S., Aygun, H., & Romero-García, V. (2019). Experimental validation of deep-subwavelength diffusion by acoustic metadiffusers. Applied Physics Letters, 115(8), 081901. doi:10.1063/1.5114877 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886 es_ES
dc.description.references Lagarrigue, C., Groby, J. P., & Tournat, V. (2013). Sustainable sonic crystal made of resonating bamboo rods. The Journal of the Acoustical Society of America, 133(1), 247-254. doi:10.1121/1.4769783 es_ES
dc.description.references Krynkin, A., Umnova, O., Yung Boon Chong, A., Taherzadeh, S., & Attenborough, K. (2010). Predictions and measurements of sound transmission through a periodic array of elastic shells in air. The Journal of the Acoustical Society of America, 128(6), 3496-3506. doi:10.1121/1.3506342 es_ES
dc.description.references Koussa, F., Defrance, J., Jean, P., & Blanc-Benon, P. (2013). Acoustical Efficiency of a Sonic Crystal Assisted Noise Barrier. Acta Acustica united with Acustica, 99(3), 399-409. doi:10.3813/aaa.918621 es_ES
dc.description.references Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007 es_ES
dc.description.references García-Chocano, V. M., Cabrera, S., & Sánchez-Dehesa, J. (2012). Broadband sound absorption by lattices of microperforated cylindrical shells. Applied Physics Letters, 101(18), 184101. doi:10.1063/1.4764560 es_ES
dc.description.references Lardeau, A., Groby, J.-P., & Romero-García, V. (2016). Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals. Crystals, 6(5), 51. doi:10.3390/cryst6050051 es_ES
dc.description.references Cavalieri, T., Cebrecos, A., Groby, J.-P., Chaufour, C., & Romero-García, V. (2019). Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation: Application to train noise reduction. Applied Acoustics, 146, 1-8. doi:10.1016/j.apacoust.2018.10.020 es_ES
dc.description.references Dimitrijević, S. M., García-Chocano, V. M., Cervera, F., Roth, E., & Sánchez-Dehesa, J. (2019). Sound Insulation and Reflection Properties of Sonic Crystal Barrier Based on Micro-Perforated Cylinders. Materials, 12(17), 2806. doi:10.3390/ma12172806 es_ES
dc.description.references Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379 es_ES
dc.description.references Duclos, A., Lafarge, D., & Pagneux, V. (2009). Transmission of acoustic waves through 2D phononic crystal: visco-thermal and multiple scattering effects. The European Physical Journal Applied Physics, 45(1), 11302. doi:10.1051/epjap:2008203 es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708 es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519 es_ES
dc.description.references Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328 es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95(1). doi:10.1103/physrevb.95.014205 es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4 es_ES
dc.description.references Merkel, A., Theocharis, G., Richoux, O., Romero-García, V., & Pagneux, V. (2015). Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters, 107(24), 244102. doi:10.1063/1.4938121 es_ES
dc.description.references Kergomard, J., & Garcia, A. (1987). Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration, 114(3), 465-479. doi:10.1016/s0022-460x(87)80017-2 es_ES
dc.description.references Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815 es_ES
dc.description.references Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem