- -

Powers of conjugacy classes in a finite groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Powers of conjugacy classes in a finite groups

Mostrar el registro completo del ítem

Beltrán, A.; Camina, RD.; Felipe Román, MJ.; Melchor, C. (2020). Powers of conjugacy classes in a finite groups. Annali di Matematica Pura ed Applicata (1923 -). 199(2):409-424. https://doi.org/10.1007/s10231-019-00885-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166212

Ficheros en el ítem

Metadatos del ítem

Título: Powers of conjugacy classes in a finite groups
Autor: Beltrán, Antonio Camina, Rachel Deborah Felipe Román, María Josefa Melchor, Carmen
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The aim of this paper is to show how the number of conjugacy classes appearing in the product of classes affect the structure of a finite group. The aim of this paper was to show several results about solvability ...[+]
Palabras clave: Finite groups , Conjugacy classes , Solvability , Power of conjugacy classes , Characters
Derechos de uso: Reserva de todos los derechos
Fuente:
Annali di Matematica Pura ed Applicata (1923 -). (issn: 0373-3114 )
DOI: 10.1007/s10231-019-00885-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10231-019-00885-2
Código del Proyecto:
info:eu-repo/grantAgreement/UJI//E-2017-02/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096872-B-I00/ES/GRUPOS, ESTRUCTURA LOCAL-GLOBAL E INVARIANTES NUMERICOS/
info:eu-repo/grantAgreement/GVA//AICO%2F2020%2F298/
Agradecimientos:
Part of this paper was written during the stay of C.Melchor at the University of Cambridge in autumn 2017, which was financially supported by the grant E-2017-02, Universitat Jaume I of Castellón. C. Melchor would like to ...[+]
Tipo: Artículo

References

Arad, Z., Fisman, E.: An analogy between products of two conjugacy classes and products of two irreducible characters in finite groups. Proc. Edinb. Math. Soc. 30, 7–22 (1987)

Arad, Z., Herzog, M.: Products of conjugacy classes in groups, Lecture Notes in Mathematics, vol. 1112. Springer-Verlag, Berlin (1985)

Beltrán, A., Felipe, M.J., Melchor, C.: Squares of real conjugacy classes in finite groups. Ann. Mat. Pura Appl. 197(2), 317–328 (2018) [+]
Arad, Z., Fisman, E.: An analogy between products of two conjugacy classes and products of two irreducible characters in finite groups. Proc. Edinb. Math. Soc. 30, 7–22 (1987)

Arad, Z., Herzog, M.: Products of conjugacy classes in groups, Lecture Notes in Mathematics, vol. 1112. Springer-Verlag, Berlin (1985)

Beltrán, A., Felipe, M.J., Melchor, C.: Squares of real conjugacy classes in finite groups. Ann. Mat. Pura Appl. 197(2), 317–328 (2018)

Beltrán, A., Felipe, M.J., Melchor, C.: Multiplying a conjugacy class by its inverse in a finite group. Israel J. Math. 227(2), 811–825 (2018)

The GAP Group, GAP—Groups, Algorithms and Programming, Vers. 4.7.7; (2015). ( http://www.gap-system.org )

Gorenstein, D.: Finite Groups. AMS Chelsea Publishing, Chelsea (1980)

Guralnick, R.M., Malle, G.: Variations on the Baer–Suzuki theorem. Math. Z. 279, 981–1006 (2015)

Guralnick, R.M., Robinson, G.R.: On extensions on the Baer–Suzuki theorem. Israel J. Math. 82, 281–297 (1993)

Guralnick, R.M., Navarro, G.: Squaring a conjugacy class and cosets of normal subgroups. Proc. Am. Math. Soc. 144(5), 1939–1945 (2016)

Huppert, B.: Character Theory of Finite Groups. Walter de Gruyter, Berlin, New York (1998)

Isaacs, I.M.: Character Theory of Finite Groups. Academic Press Inc, New York (1976)

Moori, J., Tong-Viet, H.P.: Products of conjugacy classes in simple groups. Quaest. Math. 34(4), 433–439 (2011)

Zisser, I.: The covering numbers of the sporadic simple groups. Israel J. Math. 67(2), 217–224 (1989)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem