Abu-Shumays, I. K. (2001). ANGULAR QUADRATURES FOR IMPROVED TRANSPORT COMPUTATIONS. Transport Theory and Statistical Physics, 30(2-3), 169-204. doi:10.1081/tt-100105367
Alcouffe, R.E., Baker, R.S., Brinkley, F.W., Marr, D.R., O’Dell, R.D., Walters, W.F., 1995. Dantsys: a diffusion accelerated neutral particle transport code system.
Bernal, Á., Hébert, A., Roman, J. E., Miró, R., & Verdú, G. (2017). A Krylov–Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart–Thomas method. Journal of Nuclear Science and Technology, 54(10), 1085-1094. doi:10.1080/00223131.2017.1344577
[+]
Abu-Shumays, I. K. (2001). ANGULAR QUADRATURES FOR IMPROVED TRANSPORT COMPUTATIONS. Transport Theory and Statistical Physics, 30(2-3), 169-204. doi:10.1081/tt-100105367
Alcouffe, R.E., Baker, R.S., Brinkley, F.W., Marr, D.R., O’Dell, R.D., Walters, W.F., 1995. Dantsys: a diffusion accelerated neutral particle transport code system.
Bernal, Á., Hébert, A., Roman, J. E., Miró, R., & Verdú, G. (2017). A Krylov–Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart–Thomas method. Journal of Nuclear Science and Technology, 54(10), 1085-1094. doi:10.1080/00223131.2017.1344577
Bernal García, Á., 2018. Development of a 3d modal neutron code with the finite volume method for the diffusion and discrete ordinates transport equations. Application to nuclear safety analyses (Ph.D. thesis).
Brantley, P. S., & Larsen, E. W. (2000). The SimplifiedP3Approximation. Nuclear Science and Engineering, 134(1), 1-21. doi:10.13182/nse134-01
Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2008). A nodal collocation approximation for the multi-dimensional equations – 2D applications. Annals of Nuclear Energy, 35(10), 1820-1830. doi:10.1016/j.anucene.2008.04.008
Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2018). Numerical analysis of the 2D C5G7 MOX benchmark using PL equations and a nodal collocation method. Annals of Nuclear Energy, 114, 32-41. doi:10.1016/j.anucene.2017.12.002
Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2018). Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation. Annals of Nuclear Energy, 121, 513-524. doi:10.1016/j.anucene.2018.08.010
Hébert, A., 2009. Applied reactor physics, Presses inter Polytechnique.
Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019
Issa, J. G., Riyait, N. S., Goddard, A. J. H., & Stott, G. E. (1986). Multigroup application of the anisotropic FEM code FELTRAN to one, two, three-dimensions and R-Z problems. Progress in Nuclear Energy, 18(1-2), 251-264. doi:10.1016/0149-1970(86)90031-4
Jung, Y., 2010. ntracer v1. 0 methodology manual, SNURPL-CM001 (10), Seoul National University Reactor Physics Laboratory, Seoul, Republic of Korea.
Kashi, S., Minuchehr, A., Zolfaghari, A., & Rokrok, B. (2017). Mesh-free method for numerical solution of the multi-group discrete ordinate neutron transport equation. Annals of Nuclear Energy, 106, 51-63. doi:10.1016/j.anucene.2017.03.034
Koch, R., & Becker, R. (2004). Evaluation of quadrature schemes for the discrete ordinates method. Journal of Quantitative Spectroscopy and Radiative Transfer, 84(4), 423-435. doi:10.1016/s0022-4073(03)00260-7
Kornreich, D. E., & Parsons, D. K. (2004). The Green’s function method for effective multiplication benchmark calculations in multi-region slab geometry. Annals of Nuclear Energy, 31(13), 1477-1494. doi:10.1016/j.anucene.2004.03.012
Lathrop, K. D. (1968). Ray Effects in Discrete Ordinates Equations. Nuclear Science and Engineering, 32(3), 357-369. doi:10.13182/nse68-4
Lewis, E.E., Miller, W.F., Jr, 1984. Computational methods of neutron transport.
Marleau, G., Hébert, A., Roy, R., 2008. A user guide for dragon 3.06, Report IGE-174 Rev 7.
Rhoades, W., Childs, R., 1993. Dort/tort two-and three-dimensional discrete ordinates transport, version 2.7. 3. ornl, oak ridge, Tech. rep., RSIC-CCC-543.
Smith, M., Lewis, E., Na, B., 2003. Benchmark on deterministic transport calculations without spatial homogenization: A 2-d/3-d mox fuel assembly 3-d benchmark; 2003.
Sood, A., Forster, R. A., & Kent Parsons, D. (2003). Analytical benchmark test set for criticality code verification. Progress in Nuclear Energy, 42(1), 55-106. doi:10.1016/s0149-1970(02)00098-7
[-]