- -

Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method

Show full item record

Morató-Rafet, S.; Bernal, Á.; Miró Herrero, R.; Román Moltó, JE.; Verdú Martín, GJ. (2020). Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method. Annals of Nuclear Energy. 137:1-15. https://doi.org/10.1016/j.anucene.2019.107077

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166215

Files in this item

Item Metadata

Title: Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method
Author: Morató-Rafet, Sergio Bernal, Á. Miró Herrero, Rafael Román Moltó, José Enrique Verdú Martín, Gumersindo Jesús
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] The method explained in this paper solves the steady-state of the neutron transport equation for 1D and 2D systems modeled with Cartesian geometry, by using the Discrete Ordinates method SN for the angular discretization ...[+]
Subjects: Neutron transport , Discrete ordinates , Multigroup , Finite Difference Method , Multiple Eigenvalues , Anisotropic
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Annals of Nuclear Energy. (issn: 0306-4549 )
DOI: 10.1016/j.anucene.2019.107077
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.anucene.2019.107077
Project ID:
info:eu-repo/grantAgreement/MECD//FPU13%2F01009/ES/FPU13%2F01009/
info:eu-repo/grantAgreement/MINECO//ENE2015-68353-P/ES/DESARROLLO DE UN CODIGO DE TRANSPORTE NEUTRONICO MODAL 3D POR EL METODO DE LOS VOLUMENES FINITOS Y ORDENADAS DISCRETAS/
info:eu-repo/grantAgreement/AEI//BES-2016-076782/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096437-B-I00/ES/APLICACION INTEGRADA DE FISICA DE REACTORES PARA SIMULACIONES A GRAN ESCALA/
Thanks:
This work has been partially supported by the Spanish Agencia Estatal de Investigation [Grant No. BES-2016-076782], Ministerio de Eduacion Cultura y Deporte [Grant No. FPU13/01009] and the Spanish Ministerio de Economia ...[+]
Type: Artículo

References

Abu-Shumays, I. K. (2001). ANGULAR QUADRATURES FOR IMPROVED TRANSPORT COMPUTATIONS. Transport Theory and Statistical Physics, 30(2-3), 169-204. doi:10.1081/tt-100105367

Alcouffe, R.E., Baker, R.S., Brinkley, F.W., Marr, D.R., O’Dell, R.D., Walters, W.F., 1995. Dantsys: a diffusion accelerated neutral particle transport code system.

Bernal, Á., Hébert, A., Roman, J. E., Miró, R., & Verdú, G. (2017). A Krylov–Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart–Thomas method. Journal of Nuclear Science and Technology, 54(10), 1085-1094. doi:10.1080/00223131.2017.1344577 [+]
Abu-Shumays, I. K. (2001). ANGULAR QUADRATURES FOR IMPROVED TRANSPORT COMPUTATIONS. Transport Theory and Statistical Physics, 30(2-3), 169-204. doi:10.1081/tt-100105367

Alcouffe, R.E., Baker, R.S., Brinkley, F.W., Marr, D.R., O’Dell, R.D., Walters, W.F., 1995. Dantsys: a diffusion accelerated neutral particle transport code system.

Bernal, Á., Hébert, A., Roman, J. E., Miró, R., & Verdú, G. (2017). A Krylov–Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart–Thomas method. Journal of Nuclear Science and Technology, 54(10), 1085-1094. doi:10.1080/00223131.2017.1344577

Bernal García, Á., 2018. Development of a 3d modal neutron code with the finite volume method for the diffusion and discrete ordinates transport equations. Application to nuclear safety analyses (Ph.D. thesis).

Brantley, P. S., & Larsen, E. W. (2000). The SimplifiedP3Approximation. Nuclear Science and Engineering, 134(1), 1-21. doi:10.13182/nse134-01

Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2008). A nodal collocation approximation for the multi-dimensional equations – 2D applications. Annals of Nuclear Energy, 35(10), 1820-1830. doi:10.1016/j.anucene.2008.04.008

Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2018). Numerical analysis of the 2D C5G7 MOX benchmark using PL equations and a nodal collocation method. Annals of Nuclear Energy, 114, 32-41. doi:10.1016/j.anucene.2017.12.002

Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2018). Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation. Annals of Nuclear Energy, 121, 513-524. doi:10.1016/j.anucene.2018.08.010

Hébert, A., 2009. Applied reactor physics, Presses inter Polytechnique.

Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019

Issa, J. G., Riyait, N. S., Goddard, A. J. H., & Stott, G. E. (1986). Multigroup application of the anisotropic FEM code FELTRAN to one, two, three-dimensions and R-Z problems. Progress in Nuclear Energy, 18(1-2), 251-264. doi:10.1016/0149-1970(86)90031-4

Jung, Y., 2010. ntracer v1. 0 methodology manual, SNURPL-CM001 (10), Seoul National University Reactor Physics Laboratory, Seoul, Republic of Korea.

Kashi, S., Minuchehr, A., Zolfaghari, A., & Rokrok, B. (2017). Mesh-free method for numerical solution of the multi-group discrete ordinate neutron transport equation. Annals of Nuclear Energy, 106, 51-63. doi:10.1016/j.anucene.2017.03.034

Koch, R., & Becker, R. (2004). Evaluation of quadrature schemes for the discrete ordinates method. Journal of Quantitative Spectroscopy and Radiative Transfer, 84(4), 423-435. doi:10.1016/s0022-4073(03)00260-7

Kornreich, D. E., & Parsons, D. K. (2004). The Green’s function method for effective multiplication benchmark calculations in multi-region slab geometry. Annals of Nuclear Energy, 31(13), 1477-1494. doi:10.1016/j.anucene.2004.03.012

Lathrop, K. D. (1968). Ray Effects in Discrete Ordinates Equations. Nuclear Science and Engineering, 32(3), 357-369. doi:10.13182/nse68-4

Lewis, E.E., Miller, W.F., Jr, 1984. Computational methods of neutron transport.

Marleau, G., Hébert, A., Roy, R., 2008. A user guide for dragon 3.06, Report IGE-174 Rev 7.

Rhoades, W., Childs, R., 1993. Dort/tort two-and three-dimensional discrete ordinates transport, version 2.7. 3. ornl, oak ridge, Tech. rep., RSIC-CCC-543.

Smith, M., Lewis, E., Na, B., 2003. Benchmark on deterministic transport calculations without spatial homogenization: A 2-d/3-d mox fuel assembly 3-d benchmark; 2003.

Sood, A., Forster, R. A., & Kent Parsons, D. (2003). Analytical benchmark test set for criticality code verification. Progress in Nuclear Energy, 42(1), 55-106. doi:10.1016/s0149-1970(02)00098-7

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record