Mostrar el registro sencillo del ítem
dc.contributor.author | Costoya-Sánchez, Alejandro | es_ES |
dc.contributor.author | Climent, Andreu M. | es_ES |
dc.contributor.author | Hernández-Romero, Ismael | es_ES |
dc.contributor.author | Liberos Mascarell, Alejandro | es_ES |
dc.contributor.author | Fernández-Avilés, Francisco | es_ES |
dc.contributor.author | Narayan, Sanjiv M. | es_ES |
dc.contributor.author | Atienza, Felipe | es_ES |
dc.contributor.author | Guillem Sánchez, María Salud | es_ES |
dc.contributor.author | RODRIGO BORT, MIGUEL | es_ES |
dc.date.accessioned | 2021-05-12T03:32:19Z | |
dc.date.available | 2021-05-12T03:32:19Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 0010-4825 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166216 | |
dc.description.abstract | [EN] Identification of reentrant activity driving atrial fibrillation (AF) is increasingly important to ablative therapies. The goal of this work is to study how the automatically-classified quality of the electrograms (EGMs) affects reentrant AF driver localization. EGMs from 259 AF episodes obtained from 29 AF patients were recorded using 64-poles basket catheters and were manually classified according to their quality. An algorithm capable of identifying signal quality was developed using time and spectral domain parameters. Electrical reentries were identified in 3D phase maps using phase transform and were compared with those obtained with a 2D activation-based method. Effect of EGM quality was studied by discarding 3D phase reentries detected in regions with low-quality EGMs. Removal of reentries identified by 3D phase analysis in regions with low-quality EGMs improved its performance, increasing the area under the ROC curve (AUC) from 0.69 to 0.80. The EGMs quality classification algorithm showed an accurate performance for EGM classification (AUC 0.94) and reentry detection (AUC 0.80). Automatic classification of EGM quality based on time and spectral signal parameters is feasible and accurate, avoiding the manual labelling. Discard of reentries identified in regions with automatically-detected poor-quality EGMs improved the specificity of the 3D phase-based method for AF driver identification. | es_ES |
dc.description.sponsorship | Supported in part by: Instituto de Salud Carlos III FEDER (Fondo Europeo de Desarrollo Regional; IJCI-2014-22178, DTS16/00160; PI16/01123; PI17/01059; PI17/01106), Generalitat Valenciana Grants (APOSTD/2017 and APOSTD/2018) and projects (GVA/2018/103); National Institutes of Health (R01 HL85537; K24 HL103800); EIT-Health 19600 AFFINE; Nvidia Corporation (donation grants). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers in Biology and Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Driver | es_ES |
dc.subject | Rotor | es_ES |
dc.subject | Source | es_ES |
dc.subject | Reentry | es_ES |
dc.subject | Phase mapping | es_ES |
dc.subject | Basket mapping | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Automatic quality electrogram assessment improves phase-based reentrant activity identification in atrial fibrillation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compbiomed.2019.103593 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DTS16%2F00160/ES/Guiado en Tiempo Real de la Ablación de la Fibrilación Auricular mediante Cartografía Eléctrica Global (CORIFY)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2017 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F032/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01HL85537/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//K24 HL103800/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2014-22178/ES/IJCI-2014-22178/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI17%2F01059/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/STRATIFY-AF/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2018%2F103/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Costoya-Sánchez, A.; Climent, AM.; Hernández-Romero, I.; Liberos Mascarell, A.; Fernández-Avilés, F.; Narayan, SM.; Atienza, F.... (2020). Automatic quality electrogram assessment improves phase-based reentrant activity identification in atrial fibrillation. Computers in Biology and Medicine. 117:1-8. https://doi.org/10.1016/j.compbiomed.2019.103593 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.compbiomed.2019.103593 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 117 | es_ES |
dc.identifier.pmid | 32072974 | es_ES |
dc.relation.pasarela | S\420183 | es_ES |
dc.contributor.funder | Nvidia | es_ES |
dc.contributor.funder | EIT Health | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024 | es_ES |
dc.description.references | Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011 | es_ES |
dc.description.references | Haïssaguerre, M., Hocini, M., Sanders, P., Takahashi, Y., Rotter, M., Sacher, F., … Jaïs, P. (2006). Localized Sources Maintaining Atrial Fibrillation Organized by Prior Ablation. Circulation, 113(5), 616-625. doi:10.1161/circulationaha.105.546648 | es_ES |
dc.description.references | Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 | es_ES |
dc.description.references | Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053 | es_ES |
dc.description.references | Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 | es_ES |
dc.description.references | Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631 | es_ES |
dc.description.references | Jalife, J. (2002). Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovascular Research, 54(2), 204-216. doi:10.1016/s0008-6363(02)00223-7 | es_ES |
dc.description.references | Baykaner, T., Rogers, A. J., Meckler, G. L., Zaman, J., Navara, R., Rodrigo, M., … Heidenreich, P. A. (2018). Clinical Implications of Ablation of Drivers for Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 11(5). doi:10.1161/circep.117.006119 | es_ES |
dc.description.references | Zaman, J. A. B., Sauer, W. H., Alhusseini, M. I., Baykaner, T., Borne, R. T., Kowalewski, C. A. B., … Peters, N. S. (2018). Identification and Characterization of Sites Where Persistent Atrial Fibrillation Is Terminated by Localized Ablation. Circulation: Arrhythmia and Electrophysiology, 11(1). doi:10.1161/circep.117.005258 | es_ES |
dc.description.references | Martinez-Mateu, L., Romero, L., Ferrer-Albero, A., Sebastian, R., Rodríguez Matas, J. F., Jalife, J., … Saiz, J. (2018). Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLOS Computational Biology, 14(3), e1006017. doi:10.1371/journal.pcbi.1006017 | es_ES |
dc.description.references | Identification of Rotors during Human Atrial Fibrillation Using Contact Mapping and Phase Singularity Detection: Technical Considerations. (2017). IEEE Transactions on Biomedical Engineering, 64(2), 310-318. doi:10.1109/tbme.2016.2554660 | es_ES |
dc.description.references | Podziemski, P., Zeemering, S., Kuklik, P., van Hunnik, A., Maesen, B., Maessen, J., … Schotten, U. (2018). Rotors Detected by Phase Analysis of Filtered, Epicardial Atrial Fibrillation Electrograms Colocalize With Regions of Conduction Block. Circulation: Arrhythmia and Electrophysiology, 11(10). doi:10.1161/circep.117.005858 | es_ES |
dc.description.references | ALHUSSEINI, M., VIDMAR, D., MECKLER, G. L., KOWALEWSKI, C. A., SHENASA, F., WANG, P. J., … RAPPEL, W.-J. (2017). Two Independent Mapping Techniques Identify Rotational Activity Patterns at Sites of Local Termination During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 28(6), 615-622. doi:10.1111/jce.13177 | es_ES |
dc.description.references | Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008 | es_ES |
dc.description.references | Kowalewski, C. A. B., Shenasa, F., Rodrigo, M., Clopton, P., Meckler, G., Alhusseini, M. I., … Narayan, S. M. (2018). Interaction of Localized Drivers and Disorganized Activation in Persistent Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 11(6). doi:10.1161/circep.117.005846 | es_ES |
dc.description.references | Schotten, U., Verheule, S., Kirchhof, P., & Goette, A. (2011). Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal. Physiological Reviews, 91(1), 265-325. doi:10.1152/physrev.00031.2009 | es_ES |
dc.description.references | Laughner, J., Shome, S., Child, N., Shuros, A., Neuzil, P., Gill, J., & Wright, M. (2016). Practical Considerations of Mapping Persistent Atrial Fibrillation With Whole-Chamber Basket Catheters. JACC: Clinical Electrophysiology, 2(1), 55-65. doi:10.1016/j.jacep.2015.09.017 | es_ES |
dc.description.references | Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Erratum: Spatial and temporal organization during cardiac fibrillation. Nature, 393(6681), 191-191. doi:10.1038/30290 | es_ES |
dc.description.references | Allessie, M., & de Groot, N. (2014). CrossTalk opposing view: Rotors have not been demonstrated to be the drivers of atrial fibrillation. The Journal of Physiology, 592(15), 3167-3170. doi:10.1113/jphysiol.2014.271809 | es_ES |
dc.description.references | Atienza, F., Calvo, D., Almendral, J., Zlochiver, S., Grzeda, K. R., Martínez-Alzamora, N., … Berenfeld, O. (2011). Mechanisms of Fractionated Electrograms Formation in the Posterior Left Atrium During Paroxysmal Atrial Fibrillation in Humans. Journal of the American College of Cardiology, 57(9), 1081-1092. doi:10.1016/j.jacc.2010.09.066 | es_ES |
dc.description.references | Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 | es_ES |