- -

Automatic quality electrogram assessment improves phase-based reentrant activity identification in atrial fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic quality electrogram assessment improves phase-based reentrant activity identification in atrial fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Costoya-Sánchez, Alejandro es_ES
dc.contributor.author Climent, Andreu M. es_ES
dc.contributor.author Hernández-Romero, Ismael es_ES
dc.contributor.author Liberos Mascarell, Alejandro es_ES
dc.contributor.author Fernández-Avilés, Francisco es_ES
dc.contributor.author Narayan, Sanjiv M. es_ES
dc.contributor.author Atienza, Felipe es_ES
dc.contributor.author Guillem Sánchez, María Salud es_ES
dc.contributor.author RODRIGO BORT, MIGUEL es_ES
dc.date.accessioned 2021-05-12T03:32:19Z
dc.date.available 2021-05-12T03:32:19Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166216
dc.description.abstract [EN] Identification of reentrant activity driving atrial fibrillation (AF) is increasingly important to ablative therapies. The goal of this work is to study how the automatically-classified quality of the electrograms (EGMs) affects reentrant AF driver localization. EGMs from 259 AF episodes obtained from 29 AF patients were recorded using 64-poles basket catheters and were manually classified according to their quality. An algorithm capable of identifying signal quality was developed using time and spectral domain parameters. Electrical reentries were identified in 3D phase maps using phase transform and were compared with those obtained with a 2D activation-based method. Effect of EGM quality was studied by discarding 3D phase reentries detected in regions with low-quality EGMs. Removal of reentries identified by 3D phase analysis in regions with low-quality EGMs improved its performance, increasing the area under the ROC curve (AUC) from 0.69 to 0.80. The EGMs quality classification algorithm showed an accurate performance for EGM classification (AUC 0.94) and reentry detection (AUC 0.80). Automatic classification of EGM quality based on time and spectral signal parameters is feasible and accurate, avoiding the manual labelling. Discard of reentries identified in regions with automatically-detected poor-quality EGMs improved the specificity of the 3D phase-based method for AF driver identification. es_ES
dc.description.sponsorship Supported in part by: Instituto de Salud Carlos III FEDER (Fondo Europeo de Desarrollo Regional; IJCI-2014-22178, DTS16/00160; PI16/01123; PI17/01059; PI17/01106), Generalitat Valenciana Grants (APOSTD/2017 and APOSTD/2018) and projects (GVA/2018/103); National Institutes of Health (R01 HL85537; K24 HL103800); EIT-Health 19600 AFFINE; Nvidia Corporation (donation grants). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Driver es_ES
dc.subject Rotor es_ES
dc.subject Source es_ES
dc.subject Reentry es_ES
dc.subject Phase mapping es_ES
dc.subject Basket mapping es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Automatic quality electrogram assessment improves phase-based reentrant activity identification in atrial fibrillation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2019.103593 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DTS16%2F00160/ES/Guiado en Tiempo Real de la Ablación de la Fibrilación Auricular mediante Cartografía Eléctrica Global (CORIFY)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F032/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01HL85537/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//K24 HL103800/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2014-22178/ES/IJCI-2014-22178/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01059/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/STRATIFY-AF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2018%2F103/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Costoya-Sánchez, A.; Climent, AM.; Hernández-Romero, I.; Liberos Mascarell, A.; Fernández-Avilés, F.; Narayan, SM.; Atienza, F.... (2020). Automatic quality electrogram assessment improves phase-based reentrant activity identification in atrial fibrillation. Computers in Biology and Medicine. 117:1-8. https://doi.org/10.1016/j.compbiomed.2019.103593 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2019.103593 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.identifier.pmid 32072974 es_ES
dc.relation.pasarela S\420183 es_ES
dc.contributor.funder Nvidia es_ES
dc.contributor.funder EIT Health es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024 es_ES
dc.description.references Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011 es_ES
dc.description.references Haïssaguerre, M., Hocini, M., Sanders, P., Takahashi, Y., Rotter, M., Sacher, F., … Jaïs, P. (2006). Localized Sources Maintaining Atrial Fibrillation Organized by Prior Ablation. Circulation, 113(5), 616-625. doi:10.1161/circulationaha.105.546648 es_ES
dc.description.references Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 es_ES
dc.description.references Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053 es_ES
dc.description.references Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 es_ES
dc.description.references Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631 es_ES
dc.description.references Jalife, J. (2002). Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovascular Research, 54(2), 204-216. doi:10.1016/s0008-6363(02)00223-7 es_ES
dc.description.references Baykaner, T., Rogers, A. J., Meckler, G. L., Zaman, J., Navara, R., Rodrigo, M., … Heidenreich, P. A. (2018). Clinical Implications of Ablation of Drivers for Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 11(5). doi:10.1161/circep.117.006119 es_ES
dc.description.references Zaman, J. A. B., Sauer, W. H., Alhusseini, M. I., Baykaner, T., Borne, R. T., Kowalewski, C. A. B., … Peters, N. S. (2018). Identification and Characterization of Sites Where Persistent Atrial Fibrillation Is Terminated by Localized Ablation. Circulation: Arrhythmia and Electrophysiology, 11(1). doi:10.1161/circep.117.005258 es_ES
dc.description.references Martinez-Mateu, L., Romero, L., Ferrer-Albero, A., Sebastian, R., Rodríguez Matas, J. F., Jalife, J., … Saiz, J. (2018). Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLOS Computational Biology, 14(3), e1006017. doi:10.1371/journal.pcbi.1006017 es_ES
dc.description.references Identification of Rotors during Human Atrial Fibrillation Using Contact Mapping and Phase Singularity Detection: Technical Considerations. (2017). IEEE Transactions on Biomedical Engineering, 64(2), 310-318. doi:10.1109/tbme.2016.2554660 es_ES
dc.description.references Podziemski, P., Zeemering, S., Kuklik, P., van Hunnik, A., Maesen, B., Maessen, J., … Schotten, U. (2018). Rotors Detected by Phase Analysis of Filtered, Epicardial Atrial Fibrillation Electrograms Colocalize With Regions of Conduction Block. Circulation: Arrhythmia and Electrophysiology, 11(10). doi:10.1161/circep.117.005858 es_ES
dc.description.references ALHUSSEINI, M., VIDMAR, D., MECKLER, G. L., KOWALEWSKI, C. A., SHENASA, F., WANG, P. J., … RAPPEL, W.-J. (2017). Two Independent Mapping Techniques Identify Rotational Activity Patterns at Sites of Local Termination During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 28(6), 615-622. doi:10.1111/jce.13177 es_ES
dc.description.references Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008 es_ES
dc.description.references Kowalewski, C. A. B., Shenasa, F., Rodrigo, M., Clopton, P., Meckler, G., Alhusseini, M. I., … Narayan, S. M. (2018). Interaction of Localized Drivers and Disorganized Activation in Persistent Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 11(6). doi:10.1161/circep.117.005846 es_ES
dc.description.references Schotten, U., Verheule, S., Kirchhof, P., & Goette, A. (2011). Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal. Physiological Reviews, 91(1), 265-325. doi:10.1152/physrev.00031.2009 es_ES
dc.description.references Laughner, J., Shome, S., Child, N., Shuros, A., Neuzil, P., Gill, J., & Wright, M. (2016). Practical Considerations of Mapping Persistent Atrial Fibrillation With Whole-Chamber Basket Catheters. JACC: Clinical Electrophysiology, 2(1), 55-65. doi:10.1016/j.jacep.2015.09.017 es_ES
dc.description.references Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Erratum: Spatial and temporal organization during cardiac fibrillation. Nature, 393(6681), 191-191. doi:10.1038/30290 es_ES
dc.description.references Allessie, M., & de Groot, N. (2014). CrossTalk opposing view: Rotors have not been demonstrated to be the drivers of atrial fibrillation. The Journal of Physiology, 592(15), 3167-3170. doi:10.1113/jphysiol.2014.271809 es_ES
dc.description.references Atienza, F., Calvo, D., Almendral, J., Zlochiver, S., Grzeda, K. R., Martínez-Alzamora, N., … Berenfeld, O. (2011). Mechanisms of Fractionated Electrograms Formation in the Posterior Left Atrium During Paroxysmal Atrial Fibrillation in Humans. Journal of the American College of Cardiology, 57(9), 1081-1092. doi:10.1016/j.jacc.2010.09.066 es_ES
dc.description.references Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem