- -

On Grothendieck Sets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On Grothendieck Sets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferrando, Juan Carlos es_ES
dc.contributor.author López Alfonso, Salvador es_ES
dc.contributor.author López Pellicer, Manuel es_ES
dc.date.accessioned 2021-05-12T03:32:28Z
dc.date.available 2021-05-12T03:32:28Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166220
dc.description.abstract [EN] We call a subset M of an algebra of sets A a Grothendieck set for the Banach space ba (A) of bounded finitely additive scalar-valued measures on A equipped with the variation norm if each sequence fmn g n =1 in ba(A) which is pointwise convergent on M is weakly convergent in ba(A), i. e., if there is m 2 ba (A) such that mn ( A) ! m ( A) for every A 2M then mn ! m weakly in ba(A). A subset M of an algebra of sets A is called a Nikodym set for ba(A) if each sequence fm n g n =1 in ba(A) which is pointwise bounded on M is bounded in ba (A). We prove that if S is a s-algebra of subsets of a set W which is covered by an increasing sequence fS n : n 2 Ng of subsets of S there exists p 2 N such that S p is a Grothendieck set for ba(A). This statement is the exact counterpart for Grothendieck sets of a classic result of Valdivia asserting that if a s-algebra S is covered by an increasing sequence fS n : n 2 Ng of subsets, there is p 2 N such that S p is a Nikodym set for ba (S). This also refines the Grothendieck result stating that for each s -algebra S the Banach space ` (S) is a Grothendieck space. Some applications to classic Banach space theory are given. es_ES
dc.description.sponsorship This research was funded by grant PGC2018-094431-B-I00 of Ministry of Scence, Innovation and universities of Spain. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Axioms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Property (G) es_ES
dc.subject Rainwater set es_ES
dc.subject Property (N) es_ES
dc.subject Nikodým set es_ES
dc.subject Property (VHS) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.title On Grothendieck Sets es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/axioms9010034 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.description.bibliographicCitation Ferrando, JC.; López Alfonso, S.; López Pellicer, M. (2020). On Grothendieck Sets. Axioms. 9(1):1-7. https://doi.org/10.3390/axioms9010034 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/axioms9010034 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2075-1680 es_ES
dc.relation.pasarela S\406473 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Valdivia, M. (1979). On certain barrelled normed spaces. Annales de l’institut Fourier, 29(3), 39-56. doi:10.5802/aif.752 es_ES
dc.description.references Ferrando, J. C., López-Alfonso, S., & López-Pellicer, M. (2019). On Nikodým and Rainwater sets for ba (R) and a problem of M. Valdivia. Filomat, 33(8), 2409-2416. doi:10.2298/fil1908409f es_ES
dc.description.references López-Alfonso, S. (2015). On Schachermayer and Valdivia results in algebras of Jordan measurable sets. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 110(2), 799-808. doi:10.1007/s13398-015-0267-x es_ES
dc.description.references Ferrando, J. C., & Ruiz, L. M. S. (2004). A Survey on Recent Advances on the Nikodým Boundedness Theorem and Spaces of Simple Functions. Rocky Mountain Journal of Mathematics, 34(1). doi:10.1216/rmjm/1181069896 es_ES
dc.description.references Valdivia, M. (2012). On Nikodym boundedness property. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 107(2), 355-372. doi:10.1007/s13398-012-0081-7 es_ES
dc.description.references Ferrando, J. C., Ka̧kol, J., & López-Pellicer, M. (2017). On spaces Cb(X) weakly K-analytic. Mathematische Nachrichten, 290(16), 2612-2618. doi:10.1002/mana.201600406 es_ES
dc.description.references Rainwater, J. (1963). Weak convergence of bounded sequences. Proceedings of the American Mathematical Society, 14(6), 999. doi:10.1090/s0002-9939-1963-0155171-9 es_ES
dc.description.references Simons, S. (1972). A convergence theorem with boundary. Pacific Journal of Mathematics, 40(3), 703-708. doi:10.2140/pjm.1972.40.703 es_ES
dc.description.references Drewnowski, L., Florencio, M., & Paúl, P. J. (1994). Barrelled subspaces of spaces with subseries decompositions or Boolean rings of projections. Glasgow Mathematical Journal, 36(1), 57-69. doi:10.1017/s0017089500030548 es_ES
dc.description.references Saxon, S. A. (1972). Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology. Mathematische Annalen, 197(2), 87-106. doi:10.1007/bf01419586 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem