Mostrar el registro sencillo del ítem
dc.contributor.author | Villamor, E. | es_ES |
dc.contributor.author | Monserrat Aranda, Carlos | es_ES |
dc.contributor.author | Del Río, L. | es_ES |
dc.contributor.author | Romero-Martín, J.A. | es_ES |
dc.contributor.author | Rupérez Moreno, María José | es_ES |
dc.date.accessioned | 2021-05-13T03:32:02Z | |
dc.date.available | 2021-05-13T03:32:02Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0169-2607 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166263 | |
dc.description.abstract | [EN] A great challenge in osteoporosis clinical assessment is identifying patients at higher risk of hip fracture. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold-standard, but its classification accuracy is limited to 65%. DXA-based Finite Element (FE) models have been developed to predict the mechanical failure of the bone. Yet, their contribution has been modest. In this study, supervised machine learning (ML) is applied in conjunction with clinical and computationally driven mechanical attributes. Through this multi-technique approach, we aimed to obtain a predictive model that outperforms BMD and other clinical data alone, as well as to identify the best-learned ML classifier within a group of suitable algorithms. A total number of 137 postmenopausal women (81.4 +/- 6.95 years) were included in the study and separated into a fracture group (n = 89) and a control group (n = 48). A semi-automatic and patient-specific DXA-based FE model was used to generate mechanical attributes, describing the geometry, the impact force, bone structure and mechanical response of the bone after a sideways-fall. After preprocessing the whole dataset, 19 attributes were selected as predictors. Support Vector Machine (SVM) with radial basis function (RBF), Logistic Regression, Shallow Neural Networks and Random Forest were tested through a comprehensive validation procedure to compare their predictive performance. Clinical attributes were used alone in another experimental setup for the sake of comparison. SVM was confirmed to generate the best-learned algorithm for both experimental setups, including 19 attributes and only clinical attributes. The first, generated the best-learned model and outperformed BMD by 14pp. The results suggests that this approach could be easily integrated for effective prediction of hip fracture without interrupting the actual clinical workflow. | es_ES |
dc.description.sponsorship | This study was partially funded by two grants Catedra UPVFundacion Quaes, obtained by Eduardo Villamor Medina and Antonio Cutillas Pardines, and one FPI grant (FPI-SP20170111) from the Universitat Politecnica de Valencia obtained by Eduardo Villamor Medina. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Hip fracture | es_ES |
dc.subject | Clinical Osteoporosis | es_ES |
dc.subject | Finite element | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2020.105484 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20170111/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Villamor, E.; Monserrat Aranda, C.; Del Río, L.; Romero-Martín, J.; Rupérez Moreno, MJ. (2020). Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Computer Methods and Programs in Biomedicine. 193:1-11. https://doi.org/10.1016/j.cmpb.2020.105484 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cmpb.2020.105484 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 193 | es_ES |
dc.identifier.pmid | 32278980 | es_ES |
dc.relation.pasarela | S\407379 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Cátedra Fundación QUAES, Universitat Politècnica de València | es_ES |
dc.description.references | Holt, G., Smith, R., Duncan, K., Hutchison, J. D., & Reid, D. (2009). Changes in population demographics and the future incidence of hip fracture. Injury, 40(7), 722-726. doi:10.1016/j.injury.2008.11.004 | es_ES |
dc.description.references | Cooper, C., Campion, G., & Melton, L. J. (1992). Hip fractures in the elderly: A world-wide projection. Osteoporosis International, 2(6), 285-289. doi:10.1007/bf01623184 | es_ES |
dc.description.references | Cooper, C., Atkinson, E. J., Jacobsen, S. J., O’Fallon, W. M., & Melton, L. J. (1993). Population-Based Study of Survival after Osteoporotic Fractures. American Journal of Epidemiology, 137(9), 1001-1005. doi:10.1093/oxfordjournals.aje.a116756 | es_ES |
dc.description.references | Geusens, P., van Geel, T., & van den Bergh, J. (2010). Can hip fracture prediction in women be estimated beyond bone mineral density measurement alone? Therapeutic Advances in Musculoskeletal Disease, 2(2), 63-77. doi:10.1177/1759720x09359541 | es_ES |
dc.description.references | El Maghraoui, A., & Roux, C. (2008). DXA scanning in clinical practice. QJM, 101(8), 605-617. doi:10.1093/qjmed/hcn022 | es_ES |
dc.description.references | Chevalley, T., Rizzoli, R., Nydegger, V., Slosman, D., Tkatch, L., Rapin, C.-H., … Bonjour, J.-P. (1991). Preferential low bone mineral density of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporosis International, 1(3), 147-154. doi:10.1007/bf01625444 | es_ES |
dc.description.references | Li, N., Li, X., Xu, L., Sun, W., Cheng, X., & Tian, W. (2013). Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. International Journal of Endocrinology, 2013, 1-5. doi:10.1155/2013/895474 | es_ES |
dc.description.references | Fountoulis, G., Kerenidi, T., Kokkinis, C., Georgoulias, P., Thriskos, P., Gourgoulianis, K., … Vlychou, M. (2016). Assessment of Bone Mineral Density in Male Patients with Chronic Obstructive Pulmonary Disease by DXA and Quantitative Computed Tomography. International Journal of Endocrinology, 2016, 1-6. doi:10.1155/2016/6169721 | es_ES |
dc.description.references | Yang, L., Palermo, L., Black, D. M., & Eastell, R. (2014). Prediction of Incident Hip Fracture with the Estimated Femoral Strength by Finite Element Analysis of DXA Scans in the Study of Osteoporotic Fractures. Journal of Bone and Mineral Research, 29(12), 2594-2600. doi:10.1002/jbmr.2291 | es_ES |
dc.description.references | Dall’Ara, E., Eastell, R., Viceconti, M., Pahr, D., & Yang, L. (2016). Experimental validation of DXA-based finite element models for prediction of femoral strength. Journal of the Mechanical Behavior of Biomedical Materials, 63, 17-25. doi:10.1016/j.jmbbm.2016.06.004 | es_ES |
dc.description.references | Enns-Bray, W. S., Bahaloo, H., Fleps, I., Pauchard, Y., Taghizadeh, E., Sigurdsson, S., … Helgason, B. (2019). Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone, 120, 25-37. doi:10.1016/j.bone.2018.09.014 | es_ES |
dc.description.references | Terzini, M., Aldieri, A., Rinaudo, L., Osella, G., Audenino, A. L., & Bignardi, C. (2019). Improving the Hip Fracture Risk Prediction Through 2D Finite Element Models From DXA Images: Validation Against 3D Models. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00220 | es_ES |
dc.description.references | Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A., & Nguyen, T. V. (2008). Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporosis International, 19(10), 1431-1444. doi:10.1007/s00198-008-0588-0 | es_ES |
dc.description.references | Kanis, J. A., Oden, A., Johansson, H., Borgström, F., Ström, O., & McCloskey, E. (2009). FRAX® and its applications to clinical practice. Bone, 44(5), 734-743. doi:10.1016/j.bone.2009.01.373 | es_ES |
dc.description.references | Bolland, M. J., Siu, A. T., Mason, B. H., Horne, A. M., Ames, R. W., Grey, A. B., … Reid, I. R. (2011). Evaluation of the FRAX and Garvan fracture risk calculators in older women. Journal of Bone and Mineral Research, 26(2), 420-427. doi:10.1002/jbmr.215 | es_ES |
dc.description.references | Kruse, C., Eiken, P., & Vestergaard, P. (2016). Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporosis International, 28(3), 819-832. doi:10.1007/s00198-016-3828-8 | es_ES |
dc.description.references | Nishiyama, K. K., Ito, M., Harada, A., & Boyd, S. K. (2013). Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporosis International, 25(2), 619-626. doi:10.1007/s00198-013-2459-6 | es_ES |
dc.description.references | Jiang, P., Missoum, S., & Chen, Z. (2015). Fusion of clinical and stochastic finite element data for hip fracture risk prediction. Journal of Biomechanics, 48(15), 4043-4052. doi:10.1016/j.jbiomech.2015.09.044 | es_ES |
dc.description.references | Naylor, K. E., McCloskey, E. V., Eastell, R., & Yang, L. (2013). Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. Journal of Bone and Mineral Research, 28(5), 1014-1021. doi:10.1002/jbmr.1856 | es_ES |
dc.description.references | Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694 | es_ES |
dc.description.references | Rossman, T., Kushvaha, V., & Dragomir-Daescu, D. (2015). QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 208-216. doi:10.1080/10255842.2015.1006209 | es_ES |
dc.description.references | Si, H. (2015). TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Transactions on Mathematical Software, 41(2), 1-36. doi:10.1145/2629697 | es_ES |
dc.description.references | Yang, L., Peel, N., Clowes, J. A., McCloskey, E. V., & Eastell, R. (2009). Use of DXA-Based Structural Engineering Models of the Proximal Femur to Discriminate Hip Fracture. Journal of Bone and Mineral Research, 24(1), 33-42. doi:10.1359/jbmr.080906 | es_ES |
dc.description.references | Schileo, E., Dall’Ara, E., Taddei, F., Malandrino, A., Schotkamp, T., Baleani, M., & Viceconti, M. (2008). An accurate estimation of bone density improves the accuracy of subject-specific finite element models. Journal of Biomechanics, 41(11), 2483-2491. doi:10.1016/j.jbiomech.2008.05.017 | es_ES |
dc.description.references | Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2 | es_ES |
dc.description.references | Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus–density relationships depend on anatomic site. Journal of Biomechanics, 36(7), 897-904. doi:10.1016/s0021-9290(03)00071-x | es_ES |
dc.description.references | Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4 | es_ES |
dc.description.references | Ün, K., Bevill, G., & Keaveny, T. M. (2006). The effects of side-artifacts on the elastic modulus of trabecular bone. Journal of Biomechanics, 39(11), 1955-1963. doi:10.1016/j.jbiomech.2006.05.012 | es_ES |
dc.description.references | Schileo, E., Balistreri, L., Grassi, L., Cristofolini, L., & Taddei, F. (2014). To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? Journal of Biomechanics, 47(14), 3531-3538. doi:10.1016/j.jbiomech.2014.08.024 | es_ES |
dc.description.references | Wirtz, D. C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., & Forst, R. (2000). Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics, 33(10), 1325-1330. doi:10.1016/s0021-9290(00)00069-5 | es_ES |
dc.description.references | Eckstein, F., Wunderer, C., Boehm, H., Kuhn, V., Priemel, M., Link, T. M., & Lochmüller, E.-M. (2003). Reproducibility and Side Differences of Mechanical Tests for Determining the Structural Strength of the Proximal Femur. Journal of Bone and Mineral Research, 19(3), 379-385. doi:10.1359/jbmr.0301247 | es_ES |
dc.description.references | Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J., … Cauley, J. A. (2009). Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 24(3), 475-483. doi:10.1359/jbmr.081201 | es_ES |
dc.description.references | Choi, W. J., Cripton, P. A., & Robinovitch, S. N. (2014). Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporosis International, 26(1), 291-301. doi:10.1007/s00198-014-2812-4 | es_ES |
dc.description.references | Van den Kroonenberg, A. J., Hayes, W. C., & McMahon, T. A. (1995). Dynamic Models for Sideways Falls From Standing Height. Journal of Biomechanical Engineering, 117(3), 309-318. doi:10.1115/1.2794186 | es_ES |
dc.description.references | Robinovitch, S. N., Hayes, W. C., & McMahon, T. A. (1991). Prediction of Femoral Impact Forces in Falls on the Hip. Journal of Biomechanical Engineering, 113(4), 366-374. doi:10.1115/1.2895414 | es_ES |
dc.description.references | Robinovitch, S. N., McMahon, T. A., & Hayes, W. C. (1995). Force attenuation in trochanteric soft tissues during impact from a fall. Journal of Orthopaedic Research, 13(6), 956-962. doi:10.1002/jor.1100130621 | es_ES |
dc.description.references | Dufour, A. B., Roberts, B., Broe, K. E., Kiel, D. P., Bouxsein, M. L., & Hannan, M. T. (2011). The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporosis International, 23(2), 513-520. doi:10.1007/s00198-011-1569-2 | es_ES |
dc.description.references | Schileo, E., Taddei, F., Cristofolini, L., & Viceconti, M. (2008). Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Journal of Biomechanics, 41(2), 356-367. doi:10.1016/j.jbiomech.2007.09.009 | es_ES |
dc.description.references | Mautalen, C. A., Vega, E. M., & Einhorn, T. A. (1996). Are the etiologies of cervical and trochanteric hip fractures different? Bone, 18(3), S133-S137. doi:10.1016/8756-3282(95)00490-4 | es_ES |
dc.description.references | Yang, S., Leslie, W. D., Luo, Y., Goertzen, A. L., Ahmed, S., Ward, L. M., … Lix, L. M. (2017). Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study. Osteoporosis International, 29(1), 191-200. doi:10.1007/s00198-017-4232-8 | es_ES |
dc.description.references | Testi, D., Viceconti, M., Cappello, A., & Gnudi, S. (2002). Prediction of Hip Fracture Can Be Significantly Improved by a Single Biomedical Indicator. Annals of Biomedical Engineering, 30(6), 801-807. doi:10.1114/1.1495866 | es_ES |
dc.description.references | Langton, C. M., Pisharody, S., & Keyak, J. H. (2008). Generation of a 3D proximal femur shape from a single projection 2D radiographic image. Osteoporosis International, 20(3), 455-461. doi:10.1007/s00198-008-0665-4 | es_ES |
dc.description.references | Humbert, L., Martelli, Y., Fonolla, R., Steghofer, M., Di Gregorio, S., Malouf, J., … Barquero, L. M. D. R. (2017). 3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images. IEEE Transactions on Medical Imaging, 36(1), 27-39. doi:10.1109/tmi.2016.2593346 | es_ES |
dc.description.references | Keyak, J. H., Sigurdsson, S., Karlsdottir, G., Oskarsdottir, D., Sigmarsdottir, A., Zhao, S., … Lang, T. F. (2011). Male–female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone, 48(6), 1239-1245. doi:10.1016/j.bone.2011.03.682 | es_ES |
dc.description.references | Lobo, E., Marcos, G., Santabárbara, J., Salvador-Rosés, H., Lobo-Escolar, L., De la Cámara, C., … Lobo-Escolar, A. (2017). Gender differences in the incidence of and risk factors for hip fracture: A 16-year longitudinal study in a southern European population. Maturitas, 97, 38-43. doi:10.1016/j.maturitas.2016.12.009 | es_ES |