Mostrar el registro sencillo del ítem
dc.contributor.author | Silva-Rodríguez, Julio | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Sales, María A. | es_ES |
dc.contributor.author | Molina, Rafael | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2021-05-13T03:32:04Z | |
dc.date.available | 2021-05-13T03:32:04Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 0169-2607 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166264 | |
dc.description.abstract | [EN] Background and Objective: Prostate cancer is one of the most common diseases affecting men worldwide. The Gleason scoring system is the primary diagnostic and prognostic tool for prostate cancer. Further-more, recent reports indicate that the presence of patterns of the Gleason scale such as the cribriform pattern may also correlate with a worse prognosis compared to other patterns belonging to the Glea-son grade 4. Current clinical guidelines have indicated the convenience of highlight its presence during the analysis of biopsies. All these requirements suppose a great workload for the pathologist during the analysis of each sample, which is based on the pathologist's visual analysis of the morphology and or-ganisation of the glands in the tissue, a time-consuming and subjective task. In recent years, with the development of digitisation devices, the use of computer vision techniques for the analysis of biopsies has increased. However, to the best of the authors' knowledge, the development of algorithms to automatically detect individual cribriform patterns belonging to Gleason grade 4 has not yet been studied in the literature. The objective of the work presented in this paper is to develop a deep-learning-based system able to support pathologists in the daily analysis of prostate biopsies. This analysis must include the Gleason grading of local structures, the detection of cribriform patterns, and the Gleason scoring of the whole biopsy. Methods: The methodological core of this work is a patch-wise predictive model based on convolutional neural networks able to determine the presence of cancerous patterns based on the Gleason grading system. In particular, we train from scratch a simple self-design architecture with three filters and a top model with global-max pooling. The cribriform pattern is detected by retraining the set of filters of the last convolutional layer in the network. Subsequently, a biopsy-level prediction map is reconstructed by bi-linear interpolation of the patch-level prediction of the Gleason grades. In addition, from the re-constructed prediction map, we compute the percentage of each Gleason grade in the tissue to feed a multi-layer perceptron which provides a biopsy-level score. Results: In our SICAPv2 database, composed of 182 annotated whole slide images, we obtained a Cohen's quadratic kappa of 0.77 in the test set for the patch-level Gleason grading with the proposed architec-ture trained from scratch. Our results outperform previous ones reported in the literature. Furthermore, this model reaches the level of fine-tuned state-of-the-art architectures in a patient-based four groups cross validation. In the cribriform pattern detection task, we obtained an area under ROC curve of 0.82. Regarding the biopsy Gleason scoring, we achieved a quadratic Cohen's Kappa of 0.81 in the test subset. Shallow CNN architectures trained from scratch outperform current state-of-the-art methods for Gleason grades classification. Our proposed model is capable of characterising the different Gleason grades in prostate tissue by extracting low-level features through three basic blocks (i.e. convolutional layer + max pooling). The use of global-max pooling to reduce each activation map has shown to be a key factor for reducing complexity in the model and avoiding overfitting. Regarding the Gleason scoring of biopsies, a multi-layer perceptron has shown to better model the decision-making of pathologists than previous simpler models used in the literature. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869. The Titan V used for this research was donated by the NVIDIA Corporation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Prostate cancer | es_ES |
dc.subject | Gleason | es_ES |
dc.subject | Cribriform | es_ES |
dc.subject | Whole side images | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2020.105637 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori | es_ES |
dc.description.bibliographicCitation | Silva-Rodríguez, J.; Colomer, A.; Sales, MA.; Molina, R.; Naranjo Ornedo, V. (2020). Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection. Computer Methods and Programs in Biomedicine. 195:1-18. https://doi.org/10.1016/j.cmpb.2020.105637 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cmpb.2020.105637 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 195 | es_ES |
dc.identifier.pmid | 32653747 | es_ES |
dc.relation.pasarela | S\415456 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Gordetsky, J., & Epstein, J. (2016). Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagnostic Pathology, 11(1). doi:10.1186/s13000-016-0478-2 | es_ES |
dc.description.references | Epstein, J. I., Egevad, L., Amin, M. B., Delahunt, B., Srigley, J. R., & Humphrey, P. A. (2016). The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. American Journal of Surgical Pathology, 40(2), 244-252. doi:10.1097/pas.0000000000000530 | es_ES |
dc.description.references | Sharma, M., & Miyamoto, H. (2018). Percent Gleason pattern 4 in stratifying the prognosis of patients with intermediate-risk prostate cancer. Translational Andrology and Urology, 7(S4), S484-S489. doi:10.21037/tau.2018.03.20 | es_ES |
dc.description.references | Kweldam, C. F., van der Kwast, T., & van Leenders, G. J. (2018). On cribriform prostate cancer. Translational Andrology and Urology, 7(1), 145-154. doi:10.21037/tau.2017.12.33 | es_ES |
dc.description.references | Remotti, H. (2012). Tissue Microarrays: Construction and Use. Pancreatic Cancer, 13-28. doi:10.1007/978-1-62703-287-2_2 | es_ES |
dc.description.references | KHOUJA, M. H., BAEKELANDT, M., SARAB, A., NESLAND, J. M., & HOLM, R. (2010). Limitations of tissue microarrays compared with whole tissue sections in survival analysis. Oncology Letters, 1(5), 827-831. doi:10.3892/ol_00000145 | es_ES |
dc.description.references | Gertych, A., Ing, N., Ma, Z., Fuchs, T. J., Salman, S., Mohanty, S., … Knudsen, B. S. (2015). Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Computerized Medical Imaging and Graphics, 46, 197-208. doi:10.1016/j.compmedimag.2015.08.002 | es_ES |
dc.description.references | Ren, J., Sadimin, E., Foran, D. J., & Qi, X. (2017). Computer aided analysis of prostate histopathology images to support a refined Gleason grading system. Medical Imaging 2017: Image Processing. doi:10.1117/12.2253887 | es_ES |
dc.description.references | Esteban, Á. E., López-Pérez, M., Colomer, A., Sales, M. A., Molina, R., & Naranjo, V. (2019). A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes. Computer Methods and Programs in Biomedicine, 178, 303-317. doi:10.1016/j.cmpb.2019.07.003 | es_ES |
dc.description.references | Lucas, M., Jansen, I., Savci-Heijink, C. D., Meijer, S. L., de Boer, O. J., van Leeuwen, T. G., … Marquering, H. A. (2019). Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Archiv, 475(1), 77-83. doi:10.1007/s00428-019-02577-x | es_ES |
dc.description.references | Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., … Claassen, M. (2018). Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific Reports, 8(1). doi:10.1038/s41598-018-30535-1 | es_ES |
dc.description.references | G. Nir, S. Hor, D. Karimi, L. Fazli, B.F. Skinnider, P. Tavassoli, D. Turbin, C.F. Villamil, G. Wang, R.S. Wilson, K.A. Iczkowski, M.S. Lucia, P.C. Black, P. Abolmaesumi, S.L. Goldenberg, S.E. Salcudean, Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts, 2018. 10.1016/j.media.2018.09.005 | es_ES |
dc.description.references | Nir, G., Karimi, D., Goldenberg, S. L., Fazli, L., Skinnider, B. F., Tavassoli, P., … Salcudean, S. E. (2019). Comparison of Artificial Intelligence Techniques to Evaluate Performance of a Classifier for Automatic Grading of Prostate Cancer From Digitized Histopathologic Images. JAMA Network Open, 2(3), e190442. doi:10.1001/jamanetworkopen.2019.0442 | es_ES |
dc.description.references | García, G., Colomer, A., & Naranjo, V. (2019). First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning. Entropy, 21(4), 356. doi:10.3390/e21040356 | es_ES |
dc.description.references | Ma, Y., Jiang, Z., Zhang, H., Xie, F., Zheng, Y., Shi, H., … Shi, J. (2018). Generating region proposals for histopathological whole slide image retrieval. Computer Methods and Programs in Biomedicine, 159, 1-10. doi:10.1016/j.cmpb.2018.02.020 | es_ES |
dc.description.references | Li, W., Li, J., Sarma, K. V., Ho, K. C., Shen, S., Knudsen, B. S., … Arnold, C. W. (2019). Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images. IEEE Transactions on Medical Imaging, 38(4), 945-954. doi:10.1109/tmi.2018.2875868 | es_ES |
dc.description.references | Openseadragon, (http://openseadragon.github.io/), Accessed: 10-07-2018. | es_ES |
dc.description.references | Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213-220. doi:10.1037/h0026256 | es_ES |
dc.description.references | Swets, J. A. (1988). Measuring the Accuracy of Diagnostic Systems. Science, 240(4857), 1285-1293. doi:10.1126/science.3287615 | es_ES |
dc.description.references | Kweldam, C. F., Nieboer, D., Algaba, F., Amin, M. B., Berney, D. M., Billis, A., … van Leenders, G. J. L. H. (2016). Gleason grade 4 prostate adenocarcinoma patterns: an interobserver agreement study among genitourinary pathologists. Histopathology, 69(3), 441-449. doi:10.1111/his.12976 | es_ES |