- -

Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Silva-Rodríguez, Julio es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Sales, María A. es_ES
dc.contributor.author Molina, Rafael es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2021-05-13T03:32:04Z
dc.date.available 2021-05-13T03:32:04Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166264
dc.description.abstract [EN] Background and Objective: Prostate cancer is one of the most common diseases affecting men worldwide. The Gleason scoring system is the primary diagnostic and prognostic tool for prostate cancer. Further-more, recent reports indicate that the presence of patterns of the Gleason scale such as the cribriform pattern may also correlate with a worse prognosis compared to other patterns belonging to the Glea-son grade 4. Current clinical guidelines have indicated the convenience of highlight its presence during the analysis of biopsies. All these requirements suppose a great workload for the pathologist during the analysis of each sample, which is based on the pathologist's visual analysis of the morphology and or-ganisation of the glands in the tissue, a time-consuming and subjective task. In recent years, with the development of digitisation devices, the use of computer vision techniques for the analysis of biopsies has increased. However, to the best of the authors' knowledge, the development of algorithms to automatically detect individual cribriform patterns belonging to Gleason grade 4 has not yet been studied in the literature. The objective of the work presented in this paper is to develop a deep-learning-based system able to support pathologists in the daily analysis of prostate biopsies. This analysis must include the Gleason grading of local structures, the detection of cribriform patterns, and the Gleason scoring of the whole biopsy. Methods: The methodological core of this work is a patch-wise predictive model based on convolutional neural networks able to determine the presence of cancerous patterns based on the Gleason grading system. In particular, we train from scratch a simple self-design architecture with three filters and a top model with global-max pooling. The cribriform pattern is detected by retraining the set of filters of the last convolutional layer in the network. Subsequently, a biopsy-level prediction map is reconstructed by bi-linear interpolation of the patch-level prediction of the Gleason grades. In addition, from the re-constructed prediction map, we compute the percentage of each Gleason grade in the tissue to feed a multi-layer perceptron which provides a biopsy-level score. Results: In our SICAPv2 database, composed of 182 annotated whole slide images, we obtained a Cohen's quadratic kappa of 0.77 in the test set for the patch-level Gleason grading with the proposed architec-ture trained from scratch. Our results outperform previous ones reported in the literature. Furthermore, this model reaches the level of fine-tuned state-of-the-art architectures in a patient-based four groups cross validation. In the cribriform pattern detection task, we obtained an area under ROC curve of 0.82. Regarding the biopsy Gleason scoring, we achieved a quadratic Cohen's Kappa of 0.81 in the test subset. Shallow CNN architectures trained from scratch outperform current state-of-the-art methods for Gleason grades classification. Our proposed model is capable of characterising the different Gleason grades in prostate tissue by extracting low-level features through three basic blocks (i.e. convolutional layer + max pooling). The use of global-max pooling to reduce each activation map has shown to be a key factor for reducing complexity in the model and avoiding overfitting. Regarding the Gleason scoring of biopsies, a multi-layer perceptron has shown to better model the decision-making of pathologists than previous simpler models used in the literature. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869. The Titan V used for this research was donated by the NVIDIA Corporation. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Prostate cancer es_ES
dc.subject Gleason es_ES
dc.subject Cribriform es_ES
dc.subject Whole side images es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Deep learning es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2020.105637 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.description.bibliographicCitation Silva-Rodríguez, J.; Colomer, A.; Sales, MA.; Molina, R.; Naranjo Ornedo, V. (2020). Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection. Computer Methods and Programs in Biomedicine. 195:1-18. https://doi.org/10.1016/j.cmpb.2020.105637 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2020.105637 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 195 es_ES
dc.identifier.pmid 32653747 es_ES
dc.relation.pasarela S\415456 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gordetsky, J., & Epstein, J. (2016). Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagnostic Pathology, 11(1). doi:10.1186/s13000-016-0478-2 es_ES
dc.description.references Epstein, J. I., Egevad, L., Amin, M. B., Delahunt, B., Srigley, J. R., & Humphrey, P. A. (2016). The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. American Journal of Surgical Pathology, 40(2), 244-252. doi:10.1097/pas.0000000000000530 es_ES
dc.description.references Sharma, M., & Miyamoto, H. (2018). Percent Gleason pattern 4 in stratifying the prognosis of patients with intermediate-risk prostate cancer. Translational Andrology and Urology, 7(S4), S484-S489. doi:10.21037/tau.2018.03.20 es_ES
dc.description.references Kweldam, C. F., van der Kwast, T., & van Leenders, G. J. (2018). On cribriform prostate cancer. Translational Andrology and Urology, 7(1), 145-154. doi:10.21037/tau.2017.12.33 es_ES
dc.description.references Remotti, H. (2012). Tissue Microarrays: Construction and Use. Pancreatic Cancer, 13-28. doi:10.1007/978-1-62703-287-2_2 es_ES
dc.description.references KHOUJA, M. H., BAEKELANDT, M., SARAB, A., NESLAND, J. M., & HOLM, R. (2010). Limitations of tissue microarrays compared with whole tissue sections in survival analysis. Oncology Letters, 1(5), 827-831. doi:10.3892/ol_00000145 es_ES
dc.description.references Gertych, A., Ing, N., Ma, Z., Fuchs, T. J., Salman, S., Mohanty, S., … Knudsen, B. S. (2015). Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Computerized Medical Imaging and Graphics, 46, 197-208. doi:10.1016/j.compmedimag.2015.08.002 es_ES
dc.description.references Ren, J., Sadimin, E., Foran, D. J., & Qi, X. (2017). Computer aided analysis of prostate histopathology images to support a refined Gleason grading system. Medical Imaging 2017: Image Processing. doi:10.1117/12.2253887 es_ES
dc.description.references Esteban, Á. E., López-Pérez, M., Colomer, A., Sales, M. A., Molina, R., & Naranjo, V. (2019). A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes. Computer Methods and Programs in Biomedicine, 178, 303-317. doi:10.1016/j.cmpb.2019.07.003 es_ES
dc.description.references Lucas, M., Jansen, I., Savci-Heijink, C. D., Meijer, S. L., de Boer, O. J., van Leeuwen, T. G., … Marquering, H. A. (2019). Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Archiv, 475(1), 77-83. doi:10.1007/s00428-019-02577-x es_ES
dc.description.references Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., … Claassen, M. (2018). Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific Reports, 8(1). doi:10.1038/s41598-018-30535-1 es_ES
dc.description.references G. Nir, S. Hor, D. Karimi, L. Fazli, B.F. Skinnider, P. Tavassoli, D. Turbin, C.F. Villamil, G. Wang, R.S. Wilson, K.A. Iczkowski, M.S. Lucia, P.C. Black, P. Abolmaesumi, S.L. Goldenberg, S.E. Salcudean, Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts, 2018. 10.1016/j.media.2018.09.005 es_ES
dc.description.references Nir, G., Karimi, D., Goldenberg, S. L., Fazli, L., Skinnider, B. F., Tavassoli, P., … Salcudean, S. E. (2019). Comparison of Artificial Intelligence Techniques to Evaluate Performance of a Classifier for Automatic Grading of Prostate Cancer From Digitized Histopathologic Images. JAMA Network Open, 2(3), e190442. doi:10.1001/jamanetworkopen.2019.0442 es_ES
dc.description.references García, G., Colomer, A., & Naranjo, V. (2019). First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning. Entropy, 21(4), 356. doi:10.3390/e21040356 es_ES
dc.description.references Ma, Y., Jiang, Z., Zhang, H., Xie, F., Zheng, Y., Shi, H., … Shi, J. (2018). Generating region proposals for histopathological whole slide image retrieval. Computer Methods and Programs in Biomedicine, 159, 1-10. doi:10.1016/j.cmpb.2018.02.020 es_ES
dc.description.references Li, W., Li, J., Sarma, K. V., Ho, K. C., Shen, S., Knudsen, B. S., … Arnold, C. W. (2019). Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images. IEEE Transactions on Medical Imaging, 38(4), 945-954. doi:10.1109/tmi.2018.2875868 es_ES
dc.description.references Openseadragon, (http://openseadragon.github.io/), Accessed: 10-07-2018. es_ES
dc.description.references Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213-220. doi:10.1037/h0026256 es_ES
dc.description.references Swets, J. A. (1988). Measuring the Accuracy of Diagnostic Systems. Science, 240(4857), 1285-1293. doi:10.1126/science.3287615 es_ES
dc.description.references Kweldam, C. F., Nieboer, D., Algaba, F., Amin, M. B., Berney, D. M., Billis, A., … van Leenders, G. J. L. H. (2016). Gleason grade 4 prostate adenocarcinoma patterns: an interobserver agreement study among genitourinary pathologists. Histopathology, 69(3), 441-449. doi:10.1111/his.12976 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem