Mostrar el registro sencillo del ítem
dc.contributor.author | Mares-Nasarre, Patricia | es_ES |
dc.contributor.author | Molines, Jorge | es_ES |
dc.contributor.author | GÓMEZ-MARTÍN, M. ESTHER | es_ES |
dc.contributor.author | Medina, Josep R. | es_ES |
dc.date.accessioned | 2021-05-13T03:32:21Z | |
dc.date.available | 2021-05-13T03:32:21Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 0378-3839 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166268 | |
dc.description.abstract | [EN] Mound breakwaters are usually designed to limit the mean wave overtopping rate (q) or the maximum individual wave overtopping volume (V-max). However, rarely do studies focus on wave overtopping volumes on breakwaters in depth-limited breaking wave conditions. This study analyzes 2D physical tests on mound breakwaters with relevant overtopping rates (0.33 <= R-c/H-m0 <= 2.83) and three armor layers (Cubipod (R)-1L, rock-2L and cube-2L) in depth-limited breaking wave conditions (0.20 <= H-m0/h(s) <= 0.90) and with two bottom slopes (m = 1/25 and m = 1/50). The 2-parameter Weibull distribution was used to estimate V-max* = V-max/(gH(m0)T(01)(2)) with co-efficient of determination R-2 = 83.3%. In this study, the bottom slope (m = 1/50 and m = 1/25) did not significantly influence V-mox or the number of overtopping events, N-ow. During the design phase of a mound breakwater, q is required to use the methods given in the literature to estimate Thus, q must be estimated for design purposes when measured q is not available. In this study, CLASH Neural Network (CLASH NN) was used to estimate q with R-2 = 63.6%. If the 2-parameter Weibull distribution proposed in this study is used to estimate V-max with q estimated using CLASH NN, the prediction error of V-max* is R-2 = 61.7%. With the method presented in this study, the ratio between estimated and measured falls within the range 1/2 to 2 (90% error band) when q is estimated with CLASH NN. The new estimators derived in this study provide good predictions of N-ow and V-max with a method simpler than those in the literature on overtopped mound breakwaters in depth-limited breaking wave conditions on gentle sea bottoms (1/50 <= m <= 1/25). | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support from the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) under grant RTI2018-101073-B-I00, Universitat Politecnica de Valencia (Grant SP20180111), Primeros Proyectos de Investigacion (PAID06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia and Generalitat Valenciana (Grant AEST/2019/004). The first author was also financially supported through the FPU program (Formacion de Profesorado Universitario) funded by Ministerio de Educacion, Cultura y Deporte under grant FPU16/05081. The authors thank Debra Westall for revising the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Coastal Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Mound breakwater | es_ES |
dc.subject | Wave overtopping | es_ES |
dc.subject | Individual wave overtopping volumes | es_ES |
dc.subject | Depth-limited breaking wave conditions | es_ES |
dc.subject | Bottom slope | es_ES |
dc.subject | Proportion of overtopping events | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.title | Individual wave overtopping volumes on mound breakwaters in breaking wave conditions and gentle sea bottoms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.coastaleng.2020.103703 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F05081/ES/FPU16%2F05081/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180111/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F004/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101073-B-I00/ES/ESTABILIDAD HIDRAULICA Y TRANSMISION DE DIQUES ROMPEOLAS HOMOGENEOS DE BAJA COTA DISEÑADOS A ROTURA POR FONDO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori | es_ES |
dc.description.bibliographicCitation | Mares-Nasarre, P.; Molines, J.; Gómez-Martín, ME.; Medina, JR. (2020). Individual wave overtopping volumes on mound breakwaters in breaking wave conditions and gentle sea bottoms. Coastal Engineering. 159:1-12. https://doi.org/10.1016/j.coastaleng.2020.103703 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.coastaleng.2020.103703 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 159 | es_ES |
dc.relation.pasarela | S\412689 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Battjes, J. A., & Groenendijk, H. W. (2000). Wave height distributions on shallow foreshores. Coastal Engineering, 40(3), 161-182. doi:10.1016/s0378-3839(00)00007-7 | es_ES |
dc.description.references | Bruce, T., van der Meer, J. W., Franco, L., & Pearson, J. M. (2009). Overtopping performance of different armour units for rubble mound breakwaters. Coastal Engineering, 56(2), 166-179. doi:10.1016/j.coastaleng.2008.03.015 | es_ES |
dc.description.references | Herrera, M. P., & Medina, J. R. (2015). Toe berm design for very shallow waters on steep sea bottoms. Coastal Engineering, 103, 67-77. doi:10.1016/j.coastaleng.2015.06.005 | es_ES |
dc.description.references | Herrera, M. P., Gómez-Martín, M. E., & Medina, J. R. (2017). Hydraulic stability of rock armors in breaking wave conditions. Coastal Engineering, 127, 55-67. doi:10.1016/j.coastaleng.2017.06.010 | es_ES |
dc.description.references | Makkonen, L. (2006). Plotting Positions in Extreme Value Analysis. Journal of Applied Meteorology and Climatology, 45(2), 334-340. doi:10.1175/jam2349.1 | es_ES |
dc.description.references | Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50-60. doi:10.1214/aoms/1177730491 | es_ES |
dc.description.references | Mares-Nasarre, P., Gómez-Martín, M. E., & Medina, J. R. (2019). Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions. Journal of Marine Science and Engineering, 8(1), 3. doi:10.3390/jmse8010003 | es_ES |
dc.description.references | Mares-Nasarre, P., Argente, G., Gómez-Martín, M. E., & Medina, J. R. (2019). Overtopping layer thickness and overtopping flow velocity on mound breakwaters. Coastal Engineering, 154, 103561. doi:10.1016/j.coastaleng.2019.103561 | es_ES |
dc.description.references | Molines, J., & Medina, J. R. (2016). Explicit Wave-Overtopping Formula for Mound Breakwaters with Crown Walls Using CLASH Neural Network–Derived Data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(3), 04015024. doi:10.1061/(asce)ww.1943-5460.0000322 | es_ES |
dc.description.references | Molines, J., & Medina, J. R. (2015). Calibration of overtopping roughness factors for concrete armor units in non-breaking conditions using the CLASH database. Coastal Engineering, 96, 62-70. doi:10.1016/j.coastaleng.2014.11.008 | es_ES |
dc.description.references | Molines, J., Herrera, M. P., Gómez-Martín, M. E., & Medina, J. R. (2019). Distribution of individual wave overtopping volumes on mound breakwaters. Coastal Engineering, 149, 15-27. doi:10.1016/j.coastaleng.2019.03.006 | es_ES |
dc.description.references | Nørgaard, J. Q. H., Lykke Andersen, T., & Burcharth, H. F. (2014). Distribution of individual wave overtopping volumes in shallow water wave conditions. Coastal Engineering, 83, 15-23. doi:10.1016/j.coastaleng.2013.09.003 | es_ES |
dc.description.references | Pan, Y., Li, L., Amini, F., Kuang, C., & Chen, Y. (2016). New Understanding on the Distribution of Individual Wave Overtopping Volumes over a Levee under Negative Freeboard. Journal of Coastal Research, 75(sp1), 1207-1211. doi:10.2112/si75-242.1 | es_ES |
dc.description.references | Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001 | es_ES |
dc.description.references | Victor, L., van der Meer, J. W., & Troch, P. (2012). Probability distribution of individual wave overtopping volumes for smooth impermeable steep slopes with low crest freeboards. Coastal Engineering, 64, 87-101. doi:10.1016/j.coastaleng.2012.01.003 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |