- -

Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Figueroa-López, Kelly Johana es_ES
dc.contributor.author Vicente, António A. es_ES
dc.contributor.author Reis, Maria A.M. es_ES
dc.contributor.author Torres-Giner, S. es_ES
dc.contributor.author Lagaron, Jose M. es_ES
dc.date.accessioned 2021-05-13T03:32:38Z
dc.date.available 2021-05-13T03:32:38Z
dc.date.issued 2019-01-23 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166273
dc.description.abstract [EN] In this research, the antibacterial and antioxidant properties of oregano essential oil (OEO), rosemary extract (RE), and green tea extract (GTE) were evaluated. These active substances were encapsulated into ultrathin fibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from fruit waste using solution electrospinning, and the resultant electrospun mats were annealed to produce continuous films. The incorporation of the active substances resulted in PHBV films with a relatively high contact transparency, but it also induced a slightly yellow appearance and increased the films opacity. Whereas OEO significantly reduced the onset of thermal degradation of PHBV, both the RE and GTE-containing PHBV films showed a thermal stability profile that was similar to the neat PHBV film. In any case, all the active PHBV films were stable up to approximately 200 degrees C. The incorporation of the active substances also resulted in a significant decrease in hydrophobicity. The antimicrobial and antioxidant activity of the films were finally evaluated in both open and closed systems for up to 15 days in order to anticipate the real packaging conditions. The results showed that the electrospun OEO-containing PHBV films presented the highest antimicrobial activity against two strains of food-borne bacteria, as well as the most significant antioxidant performance, ascribed to the films high content in carvacrol and thymol. Therefore, the PHBV films developed in this study presented high antimicrobial and antioxidant properties, and they can be applied as active layers to prolong the shelf life of the foods in biopackaging applications. es_ES
dc.description.sponsorship This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program number AGL2015-63855-C2-1-R and by the EU H2020 project YPACK (reference number 773872). K.J.F.-L. is a recipient of a Santiago Grisolía (GRISOLIAP/2017/101) grant of the Generalitat Valenciana (GVA) and S.T.-G. is on a Juan de la Cierva - Incorporación contract (IJCI-2016-29675) from MICIU. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PHBV es_ES
dc.subject Oregano es_ES
dc.subject Rosemary es_ES
dc.subject Green tea es_ES
dc.subject Electrospun nanofibers es_ES
dc.subject Antibacterial es_ES
dc.subject Antioxidant es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano9020144 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2017%2F101/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Figueroa-López, KJ.; Vicente, AA.; Reis, MA.; Torres-Giner, S.; Lagaron, JM. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials. 9(2):1-22. https://doi.org/10.3390/nano9020144 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano9020144 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.identifier.pmid 30678126 es_ES
dc.identifier.pmcid PMC6410073 es_ES
dc.relation.pasarela S\376813 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212 es_ES
dc.description.references Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001 es_ES
dc.description.references Requena, R., Vargas, M., & Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids, 83, 118-133. doi:10.1016/j.foodhyd.2018.04.045 es_ES
dc.description.references Lenz, R. W., & Marchessault, R. H. (2004). Bacterial Polyesters:  Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules, 6(1), 1-8. doi:10.1021/bm049700c es_ES
dc.description.references Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503-1555. doi:10.1016/s0079-6700(00)00035-6 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789 es_ES
dc.description.references Arifin, W., & Kuboki, T. (2016). Effects of thermoplastic elastomers on mechanical and thermal properties of glass fiber reinforced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composites. Polymer Composites, 39(S3), E1331-E1345. doi:10.1002/pc.24188 es_ES
dc.description.references Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002 es_ES
dc.description.references López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2004). Overview of Active Polymer-Based Packaging Technologies for Food Applications. Food Reviews International, 20(4), 357-387. doi:10.1081/fri-200033462 es_ES
dc.description.references Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469 es_ES
dc.description.references Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Bursać Kovačević, D., Pateiro, M., … Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93-101. doi:10.1016/j.foodres.2018.06.073 es_ES
dc.description.references Ge, L., Zhu, M., Li, X., Xu, Y., Ma, X., Shi, R., … Mu, C. (2018). Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids, 83, 308-316. doi:10.1016/j.foodhyd.2018.04.052 es_ES
dc.description.references Irkin, R., & Esmer, O. K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal of Food Science and Technology, 52(10), 6095-6111. doi:10.1007/s13197-015-1780-9 es_ES
dc.description.references Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126. doi:10.1016/s1466-8564(02)00012-7 es_ES
dc.description.references Ribeiro-Santos, R., Andrade, M., & Sanches-Silva, A. (2017). Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science, 14, 78-84. doi:10.1016/j.cofs.2017.01.012 es_ES
dc.description.references Hoseinnejad, M., Jafari, S. M., & Katouzian, I. (2017). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2), 161-181. doi:10.1080/1040841x.2017.1332001 es_ES
dc.description.references Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43, 587-595. doi:10.1016/j.indcrop.2012.07.069 es_ES
dc.description.references Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250-264. doi:10.1016/j.indcrop.2014.05.055 es_ES
dc.description.references Leyva-López, N., Gutiérrez-Grijalva, E., Vazquez-Olivo, G., & Heredia, J. (2017). Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules, 22(6), 989. doi:10.3390/molecules22060989 es_ES
dc.description.references Kokkini, S., Karousou, R., Dardioti, A., Krigas, N., & Lanaras, T. (1997). Autumn essential oils of Greek oregano. Phytochemistry, 44(5), 883-886. doi:10.1016/s0031-9422(96)00576-6 es_ES
dc.description.references Gounaris, Y., Skoula, M., Fournaraki, C., Drakakaki, G., & Makris, A. (2002). Comparison of essential oils and genetic relationship of Origanum × intercedens to its parental taxa in the island of Crete. Biochemical Systematics and Ecology, 30(3), 249-258. doi:10.1016/s0305-1978(01)00079-5 es_ES
dc.description.references Shang, X., Wang, Y., Zhou, X., Guo, X., Dong, S., Wang, D., … Miao, X. (2016). Acaricidal activity of oregano oil and its major component, carvacrol, thymol and p-cymene against Psoroptes cuniculi in vitro and in vivo. Veterinary Parasitology, 226, 93-96. doi:10.1016/j.vetpar.2016.07.001 es_ES
dc.description.references BURT, S. A., VLIELANDER, R., HAAGSMAN, H. P., & VELDHUIZEN, E. J. A. (2005). Increase in Activity of Essential Oil Components Carvacrol and Thymol against Escherichia coli O157:H7 by Addition of Food Stabilizers. Journal of Food Protection, 68(5), 919-926. doi:10.4315/0362-028x-68.5.919 es_ES
dc.description.references Jiang, Y., Wu, N., Fu, Y.-J., Wang, W., Luo, M., Zhao, C.-J., … Liu, X.-L. (2011). Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environmental Toxicology and Pharmacology, 32(1), 63-68. doi:10.1016/j.etap.2011.03.011 es_ES
dc.description.references Arranz, E., Mes, J., Wichers, H. J., Jaime, L., Mendiola, J. A., Reglero, G., & Santoyo, S. (2015). Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract. Journal of Functional Foods, 13, 384-390. doi:10.1016/j.jff.2015.01.015 es_ES
dc.description.references Hussain, A. I., Anwar, F., Chatha, S. A. S., Jabbar, A., Mahboob, S., & Nigam, P. S. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, 41(4), 1070-1078. doi:10.1590/s1517-83822010000400027 es_ES
dc.description.references Fournier-Larente, J., Morin, M.-P., & Grenier, D. (2016). Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Archives of Oral Biology, 65, 35-43. doi:10.1016/j.archoralbio.2016.01.014 es_ES
dc.description.references Torres-Giner, S., & Lagaron, J. M. (2010). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. I. Morphology and thermal properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.32180 es_ES
dc.description.references Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. doi:10.1016/j.foodhyd.2018.02.028 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038 es_ES
dc.description.references Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005 es_ES
dc.description.references Figueroa-Lopez, K. J., Andrade-Mahecha, M. M., & Torres-Vargas, O. L. (2018). Spice oleoresins containing antimicrobial agents improve the potential use of bio-composite films based on gelatin. Food Packaging and Shelf Life, 17, 50-56. doi:10.1016/j.fpsl.2018.05.005 es_ES
dc.description.references Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199 es_ES
dc.description.references Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348 es_ES
dc.description.references Busolo, M. A., & Lagaron, J. M. (2015). Antioxidant polyethylene films based on a resveratrol containing Clay of Interest in Food Packaging Applications. Food Packaging and Shelf Life, 6, 30-41. doi:10.1016/j.fpsl.2015.08.004 es_ES
dc.description.references Rošic, R., Pelipenko, J., Kocbek, P., Baumgartner, S., Bešter-Rogač, M., & Kristl, J. (2012). The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. European Polymer Journal, 48(8), 1374-1384. doi:10.1016/j.eurpolymj.2012.05.001 es_ES
dc.description.references Arfa, A. B., Chrakabandhu, Y., Preziosi-Belloy, L., Chalier, P., & Gontard, N. (2007). Coating papers with soy protein isolates as inclusion matrix of carvacrol. Food Research International, 40(1), 22-32. doi:10.1016/j.foodres.2006.07.011 es_ES
dc.description.references Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030 es_ES
dc.description.references Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004 es_ES
dc.description.references Kaltsa, O., Yanniotis, S., & Mandala, I. (2016). Stability properties of different fenugreek galactomannans in emulsions prepared by high-shear and ultrasonic method. Food Hydrocolloids, 52, 487-496. doi:10.1016/j.foodhyd.2015.07.024 es_ES
dc.description.references Jafari, S. M., He, Y., & Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478-488. doi:10.1016/j.jfoodeng.2007.03.007 es_ES
dc.description.references Paximada, P., Echegoyen, Y., Koutinas, A. A., Mandala, I. G., & Lagaron, J. M. (2017). Encapsulation of hydrophilic and lipophilized catechin into nanoparticles through emulsion electrospraying. Food Hydrocolloids, 64, 123-132. doi:10.1016/j.foodhyd.2016.11.003 es_ES
dc.description.references Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Alemán, A., & Gómez-Guillén, M. C. (2009). Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 23(5), 1334-1341. doi:10.1016/j.foodhyd.2008.09.013 es_ES
dc.description.references Barbieri, N., Sanchez-Contreras, A., Canto, A., Cauich-Rodriguez, J. V., Vargas-Coronado, R., & Calvo-Irabien, L. M. (2018). Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Industrial Crops and Products, 121, 114-123. doi:10.1016/j.indcrop.2018.04.081 es_ES
dc.description.references Yang, Y., Kayan, B., Bozer, N., Pate, B., Baker, C., & Gizir, A. M. (2007). Terpene degradation and extraction from basil and oregano leaves using subcritical water. Journal of Chromatography A, 1152(1-2), 262-267. doi:10.1016/j.chroma.2006.11.037 es_ES
dc.description.references Guimarães, A. G., Oliveira, M. A., Alves, R. dos S., Menezes, P. dos P., Serafini, M. R., de Souza Araújo, A. A., … Quintans Júnior, L. J. (2015). Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biological Interactions, 227, 69-76. doi:10.1016/j.cbi.2014.12.020 es_ES
dc.description.references Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488-495. doi:10.1016/j.foodhyd.2016.09.034 es_ES
dc.description.references Cordeiro, A. M. T. M., Medeiros, M. L., Santos, N. A., Soledade, L. E. B., Pontes, L. F. B. L., Souza, A. L., … Souza, A. G. (2012). Rosemary (Rosmarinus officinalis L.) extract. Journal of Thermal Analysis and Calorimetry, 113(2), 889-895. doi:10.1007/s10973-012-2778-4 es_ES
dc.description.references López de Dicastillo, C., Castro-López, M. del M., López-Vilariño, J. M., & González-Rodríguez, M. V. (2013). Immobilization of green tea extract on polypropylene films to control the antioxidant activity in food packaging. Food Research International, 53(1), 522-528. doi:10.1016/j.foodres.2013.05.022 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z es_ES
dc.description.references Zou, P., Liu, H., Li, Y., Huang, J., & Dai, Y. (2016). Surface dextran modified electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous scaffold promotes the proliferation of bone marrow-derived mesenchymal stem cells. Materials Letters, 179, 109-113. doi:10.1016/j.matlet.2016.04.189 es_ES
dc.description.references Galus, S., & Kadzińska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52, 78-86. doi:10.1016/j.foodhyd.2015.06.013 es_ES
dc.description.references Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., & Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176, 187-194. doi:10.1016/j.carbpol.2017.08.079 es_ES
dc.description.references Bravo Cadena, M., Preston, G. M., Van der Hoorn, R. A. L., Townley, H. E., & Thompson, I. P. (2018). Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 122, 582-590. doi:10.1016/j.indcrop.2018.05.081 es_ES
dc.description.references Castilho, P. C., Savluchinske-Feio, S., Weinhold, T. S., & Gouveia, S. C. (2012). Evaluation of the antimicrobial and antioxidant activities of essential oils, extracts and their main components from oregano from Madeira Island, Portugal. Food Control, 23(2), 552-558. doi:10.1016/j.foodcont.2011.08.031 es_ES
dc.description.references Stefanakis, M. K., Touloupakis, E., Anastasopoulos, E., Ghanotakis, D., Katerinopoulos, H. E., & Makridis, P. (2013). Antibacterial activity of essential oils from plants of the genus Origanum. Food Control, 34(2), 539-546. doi:10.1016/j.foodcont.2013.05.024 es_ES
dc.description.references Mohsenabadi, N., Rajaei, A., Tabatabaei, M., & Mohsenifar, A. (2018). Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules, 112, 148-155. doi:10.1016/j.ijbiomac.2018.01.034 es_ES
dc.description.references Okoh, O. O., Sadimenko, A. P., & Afolayan, A. J. (2010). Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chemistry, 120(1), 308-312. doi:10.1016/j.foodchem.2009.09.084 es_ES
dc.description.references Saeed, M., Naveed, M., Arif, M., Kakar, M. U., Manzoor, R., Abd El-Hack, M. E., … Sun, C. (2017). Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans—A comprehensive review. Biomedicine & Pharmacotherapy, 95, 1260-1275. doi:10.1016/j.biopha.2017.09.024 es_ES
dc.description.references Clarke, D., Molinaro, S., Tyuftin, A., Bolton, D., Fanning, S., & Kerry, J. P. (2016). Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment of their antimicrobial activity and impact on physical film properties. Food Control, 64, 202-211. doi:10.1016/j.foodcont.2015.12.037 es_ES
dc.description.references Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., & Simal-Gándara, J. (2017). Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65, 157-164. doi:10.1016/j.foodhyd.2016.11.014 es_ES
dc.description.references Cox, S. D., Mann, C. M., Markham, J. L., Bell, H. C., Gustafson, J. E., Warmington, J. R., & Wyllie, S. G. (2001). The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). Journal of Applied Microbiology, 88(1), 170-175. doi:10.1046/j.1365-2672.2000.00943.x es_ES
dc.description.references Yong, A.-L., Ooh, K.-F., Ong, H.-C., Chai, T.-T., & Wong, F.-C. (2015). Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts. Food Chemistry, 186, 32-36. doi:10.1016/j.foodchem.2014.11.103 es_ES
dc.description.references Park, J.-A., & Kim, S.-B. (2015). Preparation and characterization of antimicrobial electrospun poly(vinyl alcohol) nanofibers containing benzyl triethylammonium chloride. Reactive and Functional Polymers, 93, 30-37. doi:10.1016/j.reactfunctpolym.2015.05.008 es_ES
dc.description.references Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768 es_ES
dc.description.references Cruz-Gálvez, A. M., Castro-Rosas, J., Rodríguez-Marín, M. L., Cadena-Ramírez, A., Tellez-Jurado, A., Tovar-Jiménez, X., … Gómez-Aldapa, C. A. (2018). Antimicrobial activity and physicochemical characterization of a potato starch-based film containing acetonic and methanolic extracts of Hibiscus sabdariffa for use in sausage. LWT, 93, 300-305. doi:10.1016/j.lwt.2018.02.064 es_ES
dc.description.references Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19. doi:10.1016/j.fbp.2018.05.001 es_ES
dc.description.references Sentkowska, A., & Pyrzynska, K. (2018). Investigation of antioxidant interaction between Green tea polyphenols and acetaminophen using isobolographic analysis. Journal of Pharmaceutical and Biomedical Analysis, 159, 393-397. doi:10.1016/j.jpba.2018.07.029 es_ES
dc.description.references Lorenzo, J. M., & Munekata, P. E. S. (2016). Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pacific Journal of Tropical Biomedicine, 6(8), 709-719. doi:10.1016/j.apjtb.2016.06.010 es_ES
dc.description.references Shahidi, F., & Zhong, Y. (2010). Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology, 112(9), 930-940. doi:10.1002/ejlt.201000044 es_ES
dc.description.references Chun, S.-S., Vattem, D. A., Lin, Y.-T., & Shetty, K. (2005). Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochemistry, 40(2), 809-816. doi:10.1016/j.procbio.2004.02.018 es_ES
dc.description.references Bajalan, I., Rouzbahani, R., Pirbalouti, A. G., & Maggi, F. (2017). Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Industrial Crops and Products, 107, 305-311. doi:10.1016/j.indcrop.2017.05.063 es_ES
dc.description.references Yan, S., Shao, H., Zhou, Z., Wang, Q., Zhao, L., & Yang, X. (2018). Non-extractable polyphenols of green tea and their antioxidant, anti-α-glucosidase capacity, and release during in vitro digestion. Journal of Functional Foods, 42, 129-136. doi:10.1016/j.jff.2018.01.006 es_ES
dc.description.references Afroz Bakht, M., Geesi, M. H., Riadi, Y., Imran, M., Imtiyaz Ali, M., Ahsan, M. J., & Ajmal, N. (2019). Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi Journal of Biological Sciences, 26(5), 1043-1052. doi:10.1016/j.sjbs.2018.07.013 es_ES
dc.description.references Lu, M.-J., & Chen, C. (2008). Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Research International, 41(2), 130-137. doi:10.1016/j.foodres.2007.10.012 es_ES
dc.description.references Asensio, C. M., Grosso, N. R., & Juliani, H. R. (2015). Quality characters, chemical composition and biological activities of oregano (Origanum spp.) Essential oils from Central and Southern Argentina. Industrial Crops and Products, 63, 203-213. doi:10.1016/j.indcrop.2014.09.056 es_ES
dc.description.references Mechergui, K., Jaouadi, W., Coelho, J. P., & Khouja, M. L. (2016). Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp glandulosum (Desf.) Ietswaart) growing in North Africa. Industrial Crops and Products, 90, 32-37. doi:10.1016/j.indcrop.2016.06.011 es_ES
dc.description.references Yan, F., Azizi, A., Janke, S., Schwarz, M., Zeller, S., & Honermeier, B. (2016). Antioxidant capacity variation in the oregano ( Origanum vulgare L.) collection of the German National Genebank. Industrial Crops and Products, 92, 19-25. doi:10.1016/j.indcrop.2016.07.038 es_ES
dc.description.references Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., … Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52, 116-124. doi:10.1016/j.ijbiomac.2012.08.026 es_ES
dc.description.references Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. doi:10.1016/j.tifs.2013.10.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem