Mostrar el registro sencillo del ítem
dc.contributor.author | Figueroa-López, Kelly Johana | es_ES |
dc.contributor.author | Vicente, António A. | es_ES |
dc.contributor.author | Reis, Maria A.M. | es_ES |
dc.contributor.author | Torres-Giner, S. | es_ES |
dc.contributor.author | Lagaron, Jose M. | es_ES |
dc.date.accessioned | 2021-05-13T03:32:38Z | |
dc.date.available | 2021-05-13T03:32:38Z | |
dc.date.issued | 2019-01-23 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166273 | |
dc.description.abstract | [EN] In this research, the antibacterial and antioxidant properties of oregano essential oil (OEO), rosemary extract (RE), and green tea extract (GTE) were evaluated. These active substances were encapsulated into ultrathin fibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from fruit waste using solution electrospinning, and the resultant electrospun mats were annealed to produce continuous films. The incorporation of the active substances resulted in PHBV films with a relatively high contact transparency, but it also induced a slightly yellow appearance and increased the films opacity. Whereas OEO significantly reduced the onset of thermal degradation of PHBV, both the RE and GTE-containing PHBV films showed a thermal stability profile that was similar to the neat PHBV film. In any case, all the active PHBV films were stable up to approximately 200 degrees C. The incorporation of the active substances also resulted in a significant decrease in hydrophobicity. The antimicrobial and antioxidant activity of the films were finally evaluated in both open and closed systems for up to 15 days in order to anticipate the real packaging conditions. The results showed that the electrospun OEO-containing PHBV films presented the highest antimicrobial activity against two strains of food-borne bacteria, as well as the most significant antioxidant performance, ascribed to the films high content in carvacrol and thymol. Therefore, the PHBV films developed in this study presented high antimicrobial and antioxidant properties, and they can be applied as active layers to prolong the shelf life of the foods in biopackaging applications. | es_ES |
dc.description.sponsorship | This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program number AGL2015-63855-C2-1-R and by the EU H2020 project YPACK (reference number 773872). K.J.F.-L. is a recipient of a Santiago Grisolía (GRISOLIAP/2017/101) grant of the Generalitat Valenciana (GVA) and S.T.-G. is on a Juan de la Cierva - Incorporación contract (IJCI-2016-29675) from MICIU. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Nanomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | PHBV | es_ES |
dc.subject | Oregano | es_ES |
dc.subject | Rosemary | es_ES |
dc.subject | Green tea | es_ES |
dc.subject | Electrospun nanofibers | es_ES |
dc.subject | Antibacterial | es_ES |
dc.subject | Antioxidant | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/nano9020144 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2017%2F101/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.description.bibliographicCitation | Figueroa-López, KJ.; Vicente, AA.; Reis, MA.; Torres-Giner, S.; Lagaron, JM. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials. 9(2):1-22. https://doi.org/10.3390/nano9020144 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/nano9020144 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2079-4991 | es_ES |
dc.identifier.pmid | 30678126 | es_ES |
dc.identifier.pmcid | PMC6410073 | es_ES |
dc.relation.pasarela | S\376813 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212 | es_ES |
dc.description.references | Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001 | es_ES |
dc.description.references | Requena, R., Vargas, M., & Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids, 83, 118-133. doi:10.1016/j.foodhyd.2018.04.045 | es_ES |
dc.description.references | Lenz, R. W., & Marchessault, R. H. (2004). Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules, 6(1), 1-8. doi:10.1021/bm049700c | es_ES |
dc.description.references | Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503-1555. doi:10.1016/s0079-6700(00)00035-6 | es_ES |
dc.description.references | Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 | es_ES |
dc.description.references | Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789 | es_ES |
dc.description.references | Arifin, W., & Kuboki, T. (2016). Effects of thermoplastic elastomers on mechanical and thermal properties of glass fiber reinforced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composites. Polymer Composites, 39(S3), E1331-E1345. doi:10.1002/pc.24188 | es_ES |
dc.description.references | Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002 | es_ES |
dc.description.references | López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2004). Overview of Active Polymer-Based Packaging Technologies for Food Applications. Food Reviews International, 20(4), 357-387. doi:10.1081/fri-200033462 | es_ES |
dc.description.references | Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469 | es_ES |
dc.description.references | Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Bursać Kovačević, D., Pateiro, M., … Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93-101. doi:10.1016/j.foodres.2018.06.073 | es_ES |
dc.description.references | Ge, L., Zhu, M., Li, X., Xu, Y., Ma, X., Shi, R., … Mu, C. (2018). Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids, 83, 308-316. doi:10.1016/j.foodhyd.2018.04.052 | es_ES |
dc.description.references | Irkin, R., & Esmer, O. K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal of Food Science and Technology, 52(10), 6095-6111. doi:10.1007/s13197-015-1780-9 | es_ES |
dc.description.references | Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126. doi:10.1016/s1466-8564(02)00012-7 | es_ES |
dc.description.references | Ribeiro-Santos, R., Andrade, M., & Sanches-Silva, A. (2017). Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science, 14, 78-84. doi:10.1016/j.cofs.2017.01.012 | es_ES |
dc.description.references | Hoseinnejad, M., Jafari, S. M., & Katouzian, I. (2017). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2), 161-181. doi:10.1080/1040841x.2017.1332001 | es_ES |
dc.description.references | Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43, 587-595. doi:10.1016/j.indcrop.2012.07.069 | es_ES |
dc.description.references | Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250-264. doi:10.1016/j.indcrop.2014.05.055 | es_ES |
dc.description.references | Leyva-López, N., Gutiérrez-Grijalva, E., Vazquez-Olivo, G., & Heredia, J. (2017). Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules, 22(6), 989. doi:10.3390/molecules22060989 | es_ES |
dc.description.references | Kokkini, S., Karousou, R., Dardioti, A., Krigas, N., & Lanaras, T. (1997). Autumn essential oils of Greek oregano. Phytochemistry, 44(5), 883-886. doi:10.1016/s0031-9422(96)00576-6 | es_ES |
dc.description.references | Gounaris, Y., Skoula, M., Fournaraki, C., Drakakaki, G., & Makris, A. (2002). Comparison of essential oils and genetic relationship of Origanum × intercedens to its parental taxa in the island of Crete. Biochemical Systematics and Ecology, 30(3), 249-258. doi:10.1016/s0305-1978(01)00079-5 | es_ES |
dc.description.references | Shang, X., Wang, Y., Zhou, X., Guo, X., Dong, S., Wang, D., … Miao, X. (2016). Acaricidal activity of oregano oil and its major component, carvacrol, thymol and p-cymene against Psoroptes cuniculi in vitro and in vivo. Veterinary Parasitology, 226, 93-96. doi:10.1016/j.vetpar.2016.07.001 | es_ES |
dc.description.references | BURT, S. A., VLIELANDER, R., HAAGSMAN, H. P., & VELDHUIZEN, E. J. A. (2005). Increase in Activity of Essential Oil Components Carvacrol and Thymol against Escherichia coli O157:H7 by Addition of Food Stabilizers. Journal of Food Protection, 68(5), 919-926. doi:10.4315/0362-028x-68.5.919 | es_ES |
dc.description.references | Jiang, Y., Wu, N., Fu, Y.-J., Wang, W., Luo, M., Zhao, C.-J., … Liu, X.-L. (2011). Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environmental Toxicology and Pharmacology, 32(1), 63-68. doi:10.1016/j.etap.2011.03.011 | es_ES |
dc.description.references | Arranz, E., Mes, J., Wichers, H. J., Jaime, L., Mendiola, J. A., Reglero, G., & Santoyo, S. (2015). Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract. Journal of Functional Foods, 13, 384-390. doi:10.1016/j.jff.2015.01.015 | es_ES |
dc.description.references | Hussain, A. I., Anwar, F., Chatha, S. A. S., Jabbar, A., Mahboob, S., & Nigam, P. S. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, 41(4), 1070-1078. doi:10.1590/s1517-83822010000400027 | es_ES |
dc.description.references | Fournier-Larente, J., Morin, M.-P., & Grenier, D. (2016). Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Archives of Oral Biology, 65, 35-43. doi:10.1016/j.archoralbio.2016.01.014 | es_ES |
dc.description.references | Torres-Giner, S., & Lagaron, J. M. (2010). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. I. Morphology and thermal properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.32180 | es_ES |
dc.description.references | Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. doi:10.1016/j.foodhyd.2018.02.028 | es_ES |
dc.description.references | Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 | es_ES |
dc.description.references | Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038 | es_ES |
dc.description.references | Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005 | es_ES |
dc.description.references | Figueroa-Lopez, K. J., Andrade-Mahecha, M. M., & Torres-Vargas, O. L. (2018). Spice oleoresins containing antimicrobial agents improve the potential use of bio-composite films based on gelatin. Food Packaging and Shelf Life, 17, 50-56. doi:10.1016/j.fpsl.2018.05.005 | es_ES |
dc.description.references | Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199 | es_ES |
dc.description.references | Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348 | es_ES |
dc.description.references | Busolo, M. A., & Lagaron, J. M. (2015). Antioxidant polyethylene films based on a resveratrol containing Clay of Interest in Food Packaging Applications. Food Packaging and Shelf Life, 6, 30-41. doi:10.1016/j.fpsl.2015.08.004 | es_ES |
dc.description.references | Rošic, R., Pelipenko, J., Kocbek, P., Baumgartner, S., Bešter-Rogač, M., & Kristl, J. (2012). The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. European Polymer Journal, 48(8), 1374-1384. doi:10.1016/j.eurpolymj.2012.05.001 | es_ES |
dc.description.references | Arfa, A. B., Chrakabandhu, Y., Preziosi-Belloy, L., Chalier, P., & Gontard, N. (2007). Coating papers with soy protein isolates as inclusion matrix of carvacrol. Food Research International, 40(1), 22-32. doi:10.1016/j.foodres.2006.07.011 | es_ES |
dc.description.references | Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030 | es_ES |
dc.description.references | Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004 | es_ES |
dc.description.references | Kaltsa, O., Yanniotis, S., & Mandala, I. (2016). Stability properties of different fenugreek galactomannans in emulsions prepared by high-shear and ultrasonic method. Food Hydrocolloids, 52, 487-496. doi:10.1016/j.foodhyd.2015.07.024 | es_ES |
dc.description.references | Jafari, S. M., He, Y., & Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478-488. doi:10.1016/j.jfoodeng.2007.03.007 | es_ES |
dc.description.references | Paximada, P., Echegoyen, Y., Koutinas, A. A., Mandala, I. G., & Lagaron, J. M. (2017). Encapsulation of hydrophilic and lipophilized catechin into nanoparticles through emulsion electrospraying. Food Hydrocolloids, 64, 123-132. doi:10.1016/j.foodhyd.2016.11.003 | es_ES |
dc.description.references | Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Alemán, A., & Gómez-Guillén, M. C. (2009). Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 23(5), 1334-1341. doi:10.1016/j.foodhyd.2008.09.013 | es_ES |
dc.description.references | Barbieri, N., Sanchez-Contreras, A., Canto, A., Cauich-Rodriguez, J. V., Vargas-Coronado, R., & Calvo-Irabien, L. M. (2018). Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Industrial Crops and Products, 121, 114-123. doi:10.1016/j.indcrop.2018.04.081 | es_ES |
dc.description.references | Yang, Y., Kayan, B., Bozer, N., Pate, B., Baker, C., & Gizir, A. M. (2007). Terpene degradation and extraction from basil and oregano leaves using subcritical water. Journal of Chromatography A, 1152(1-2), 262-267. doi:10.1016/j.chroma.2006.11.037 | es_ES |
dc.description.references | Guimarães, A. G., Oliveira, M. A., Alves, R. dos S., Menezes, P. dos P., Serafini, M. R., de Souza Araújo, A. A., … Quintans Júnior, L. J. (2015). Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biological Interactions, 227, 69-76. doi:10.1016/j.cbi.2014.12.020 | es_ES |
dc.description.references | Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488-495. doi:10.1016/j.foodhyd.2016.09.034 | es_ES |
dc.description.references | Cordeiro, A. M. T. M., Medeiros, M. L., Santos, N. A., Soledade, L. E. B., Pontes, L. F. B. L., Souza, A. L., … Souza, A. G. (2012). Rosemary (Rosmarinus officinalis L.) extract. Journal of Thermal Analysis and Calorimetry, 113(2), 889-895. doi:10.1007/s10973-012-2778-4 | es_ES |
dc.description.references | López de Dicastillo, C., Castro-López, M. del M., López-Vilariño, J. M., & González-Rodríguez, M. V. (2013). Immobilization of green tea extract on polypropylene films to control the antioxidant activity in food packaging. Food Research International, 53(1), 522-528. doi:10.1016/j.foodres.2013.05.022 | es_ES |
dc.description.references | Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z | es_ES |
dc.description.references | Zou, P., Liu, H., Li, Y., Huang, J., & Dai, Y. (2016). Surface dextran modified electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous scaffold promotes the proliferation of bone marrow-derived mesenchymal stem cells. Materials Letters, 179, 109-113. doi:10.1016/j.matlet.2016.04.189 | es_ES |
dc.description.references | Galus, S., & Kadzińska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52, 78-86. doi:10.1016/j.foodhyd.2015.06.013 | es_ES |
dc.description.references | Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., & Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176, 187-194. doi:10.1016/j.carbpol.2017.08.079 | es_ES |
dc.description.references | Bravo Cadena, M., Preston, G. M., Van der Hoorn, R. A. L., Townley, H. E., & Thompson, I. P. (2018). Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 122, 582-590. doi:10.1016/j.indcrop.2018.05.081 | es_ES |
dc.description.references | Castilho, P. C., Savluchinske-Feio, S., Weinhold, T. S., & Gouveia, S. C. (2012). Evaluation of the antimicrobial and antioxidant activities of essential oils, extracts and their main components from oregano from Madeira Island, Portugal. Food Control, 23(2), 552-558. doi:10.1016/j.foodcont.2011.08.031 | es_ES |
dc.description.references | Stefanakis, M. K., Touloupakis, E., Anastasopoulos, E., Ghanotakis, D., Katerinopoulos, H. E., & Makridis, P. (2013). Antibacterial activity of essential oils from plants of the genus Origanum. Food Control, 34(2), 539-546. doi:10.1016/j.foodcont.2013.05.024 | es_ES |
dc.description.references | Mohsenabadi, N., Rajaei, A., Tabatabaei, M., & Mohsenifar, A. (2018). Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules, 112, 148-155. doi:10.1016/j.ijbiomac.2018.01.034 | es_ES |
dc.description.references | Okoh, O. O., Sadimenko, A. P., & Afolayan, A. J. (2010). Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chemistry, 120(1), 308-312. doi:10.1016/j.foodchem.2009.09.084 | es_ES |
dc.description.references | Saeed, M., Naveed, M., Arif, M., Kakar, M. U., Manzoor, R., Abd El-Hack, M. E., … Sun, C. (2017). Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans—A comprehensive review. Biomedicine & Pharmacotherapy, 95, 1260-1275. doi:10.1016/j.biopha.2017.09.024 | es_ES |
dc.description.references | Clarke, D., Molinaro, S., Tyuftin, A., Bolton, D., Fanning, S., & Kerry, J. P. (2016). Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment of their antimicrobial activity and impact on physical film properties. Food Control, 64, 202-211. doi:10.1016/j.foodcont.2015.12.037 | es_ES |
dc.description.references | Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., & Simal-Gándara, J. (2017). Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65, 157-164. doi:10.1016/j.foodhyd.2016.11.014 | es_ES |
dc.description.references | Cox, S. D., Mann, C. M., Markham, J. L., Bell, H. C., Gustafson, J. E., Warmington, J. R., & Wyllie, S. G. (2001). The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). Journal of Applied Microbiology, 88(1), 170-175. doi:10.1046/j.1365-2672.2000.00943.x | es_ES |
dc.description.references | Yong, A.-L., Ooh, K.-F., Ong, H.-C., Chai, T.-T., & Wong, F.-C. (2015). Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts. Food Chemistry, 186, 32-36. doi:10.1016/j.foodchem.2014.11.103 | es_ES |
dc.description.references | Park, J.-A., & Kim, S.-B. (2015). Preparation and characterization of antimicrobial electrospun poly(vinyl alcohol) nanofibers containing benzyl triethylammonium chloride. Reactive and Functional Polymers, 93, 30-37. doi:10.1016/j.reactfunctpolym.2015.05.008 | es_ES |
dc.description.references | Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768 | es_ES |
dc.description.references | Cruz-Gálvez, A. M., Castro-Rosas, J., Rodríguez-Marín, M. L., Cadena-Ramírez, A., Tellez-Jurado, A., Tovar-Jiménez, X., … Gómez-Aldapa, C. A. (2018). Antimicrobial activity and physicochemical characterization of a potato starch-based film containing acetonic and methanolic extracts of Hibiscus sabdariffa for use in sausage. LWT, 93, 300-305. doi:10.1016/j.lwt.2018.02.064 | es_ES |
dc.description.references | Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19. doi:10.1016/j.fbp.2018.05.001 | es_ES |
dc.description.references | Sentkowska, A., & Pyrzynska, K. (2018). Investigation of antioxidant interaction between Green tea polyphenols and acetaminophen using isobolographic analysis. Journal of Pharmaceutical and Biomedical Analysis, 159, 393-397. doi:10.1016/j.jpba.2018.07.029 | es_ES |
dc.description.references | Lorenzo, J. M., & Munekata, P. E. S. (2016). Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pacific Journal of Tropical Biomedicine, 6(8), 709-719. doi:10.1016/j.apjtb.2016.06.010 | es_ES |
dc.description.references | Shahidi, F., & Zhong, Y. (2010). Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology, 112(9), 930-940. doi:10.1002/ejlt.201000044 | es_ES |
dc.description.references | Chun, S.-S., Vattem, D. A., Lin, Y.-T., & Shetty, K. (2005). Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochemistry, 40(2), 809-816. doi:10.1016/j.procbio.2004.02.018 | es_ES |
dc.description.references | Bajalan, I., Rouzbahani, R., Pirbalouti, A. G., & Maggi, F. (2017). Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Industrial Crops and Products, 107, 305-311. doi:10.1016/j.indcrop.2017.05.063 | es_ES |
dc.description.references | Yan, S., Shao, H., Zhou, Z., Wang, Q., Zhao, L., & Yang, X. (2018). Non-extractable polyphenols of green tea and their antioxidant, anti-α-glucosidase capacity, and release during in vitro digestion. Journal of Functional Foods, 42, 129-136. doi:10.1016/j.jff.2018.01.006 | es_ES |
dc.description.references | Afroz Bakht, M., Geesi, M. H., Riadi, Y., Imran, M., Imtiyaz Ali, M., Ahsan, M. J., & Ajmal, N. (2019). Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi Journal of Biological Sciences, 26(5), 1043-1052. doi:10.1016/j.sjbs.2018.07.013 | es_ES |
dc.description.references | Lu, M.-J., & Chen, C. (2008). Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Research International, 41(2), 130-137. doi:10.1016/j.foodres.2007.10.012 | es_ES |
dc.description.references | Asensio, C. M., Grosso, N. R., & Juliani, H. R. (2015). Quality characters, chemical composition and biological activities of oregano (Origanum spp.) Essential oils from Central and Southern Argentina. Industrial Crops and Products, 63, 203-213. doi:10.1016/j.indcrop.2014.09.056 | es_ES |
dc.description.references | Mechergui, K., Jaouadi, W., Coelho, J. P., & Khouja, M. L. (2016). Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp glandulosum (Desf.) Ietswaart) growing in North Africa. Industrial Crops and Products, 90, 32-37. doi:10.1016/j.indcrop.2016.06.011 | es_ES |
dc.description.references | Yan, F., Azizi, A., Janke, S., Schwarz, M., Zeller, S., & Honermeier, B. (2016). Antioxidant capacity variation in the oregano ( Origanum vulgare L.) collection of the German National Genebank. Industrial Crops and Products, 92, 19-25. doi:10.1016/j.indcrop.2016.07.038 | es_ES |
dc.description.references | Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., … Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52, 116-124. doi:10.1016/j.ijbiomac.2012.08.026 | es_ES |
dc.description.references | Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. doi:10.1016/j.tifs.2013.10.008 | es_ES |