Mostrar el registro sencillo del ítem
dc.contributor.author | Heras, Stella | es_ES |
dc.contributor.author | Palanca Cámara, Javier | es_ES |
dc.contributor.author | Rodriguez, Paula | es_ES |
dc.contributor.author | Duque-Méndez, Néstor | es_ES |
dc.contributor.author | Julian Inglada, Vicente Javier | es_ES |
dc.date.accessioned | 2021-05-14T03:31:22Z | |
dc.date.available | 2021-05-14T03:31:22Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166335 | |
dc.description.abstract | [EN] The massive presence of online learning resources leads many students to have more information than they can consume efficiently. Therefore, students do not always find adaptive learning material for their needs and preferences. In this paper, we present a Conversational Educational Recommender System (C-ERS), which helps students in the process of finding the more appropriated learning resources considering their learning objectives and profile. The recommendation process is based on an argumentation-based approach that selects the learning objects that allow a greater number of arguments to be generated to justify their suitability. Our system includes a simple and intuitive communication interface with the user that provides an explanation to any recommendation. This allows the user to interact with the system and accept or reject the recommendations, providing reasons for such behavior. In this way, the user is able to inspect the system's operation and understand the recommendations, while the system is able to elicit the actual preferences of the user. The system has been tested online with a real group of undergraduate students in the Universidad Nacional de Colombia, showing promising results. | es_ES |
dc.description.sponsorship | This work was partially supported by MINECO/FEDER RTI2018-095390-B-C31 project of the Spanish government, and by the Generalitat Valenciana (PROMETEO/2018/002) project. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Educational recommender systems | es_ES |
dc.subject | Explanations | es_ES |
dc.subject | Argumentation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Recommending Learning Objects with Arguments and Explanations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10103341 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F002/ES/TECNOLOGIES PER ORGANITZACIONS HUMANES EMOCIONALS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Heras, S.; Palanca Cámara, J.; Rodriguez, P.; Duque-Méndez, N.; Julian Inglada, VJ. (2020). Recommending Learning Objects with Arguments and Explanations. Applied Sciences. 10(10):1-18. https://doi.org/10.3390/app10103341 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10103341 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\414592 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Zapalska, A., & Brozik, D. (2006). Learning styles and online education. Campus-Wide Information Systems, 23(5), 325-335. doi:10.1108/10650740610714080 | es_ES |
dc.description.references | Rodríguez, P., Heras, S., Palanca, J., Poveda, J. M., Duque, N., & Julián, V. (2017). An educational recommender system based on argumentation theory. AI Communications, 30(1), 19-36. doi:10.3233/aic-170724 | es_ES |
dc.description.references | Chen, L., & Pu, P. (2011). Critiquing-based recommenders: survey and emerging trends. User Modeling and User-Adapted Interaction, 22(1-2), 125-150. doi:10.1007/s11257-011-9108-6 | es_ES |
dc.description.references | He, C., Parra, D., & Verbert, K. (2016). Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities. Expert Systems with Applications, 56, 9-27. doi:10.1016/j.eswa.2016.02.013 | es_ES |
dc.description.references | Vig, J., Sen, S., & Riedl, J. (2009). Tagsplanations. Proceedings of the 14th international conference on Intelligent user interfaces. doi:10.1145/1502650.1502661 | es_ES |
dc.description.references | Symeonidis, P., Nanopoulos, A., & Manolopoulos, Y. (2009). MoviExplain. Proceedings of the third ACM conference on Recommender systems - RecSys ’09. doi:10.1145/1639714.1639777 | es_ES |
dc.description.references | Fogg, B. J. (2002). Persuasive technology. Ubiquity, 2002(December), 2. doi:10.1145/764008.763957 | es_ES |
dc.description.references | Benbasat, I., & Wang, W. (2005). Trust In and Adoption of Online Recommendation Agents. Journal of the Association for Information Systems, 6(3), 72-101. doi:10.17705/1jais.00065 | es_ES |
dc.description.references | Sikka, R., Dhankhar, A., & Rana, C. (2012). A Survey Paper on E-Learning Recommender System. International Journal of Computer Applications, 47(9), 27-30. doi:10.5120/7218-0024 | es_ES |
dc.description.references | Salehi, M., Pourzaferani, M., & Razavi, S. A. (2013). Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model. Egyptian Informatics Journal, 14(1), 67-78. doi:10.1016/j.eij.2012.12.001 | es_ES |
dc.description.references | Dwivedi, P., & Bharadwaj, K. K. (2013). e-Learning recommender system for a group of learners based on the unified learner profile approach. Expert Systems, 32(2), 264-276. doi:10.1111/exsy.12061 | es_ES |
dc.description.references | Tarus, J. K., Niu, Z., & Mustafa, G. (2017). Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50(1), 21-48. doi:10.1007/s10462-017-9539-5 | es_ES |
dc.description.references | BRIGUEZ, C. E., CAPOBIANCO, M., & MAGUITMAN, A. G. (2013). A THEORETICAL FRAMEWORK FOR TRUST-BASED NEWS RECOMMENDER SYSTEMS AND ITS IMPLEMENTATION USING DEFEASIBLE ARGUMENTATION. International Journal on Artificial Intelligence Tools, 22(04), 1350021. doi:10.1142/s0218213013500218 | es_ES |
dc.description.references | Recio-García, J. A., Quijano, L., & Díaz-Agudo, B. (2013). Including social factors in an argumentative model for Group Decision Support Systems. Decision Support Systems, 56, 48-55. doi:10.1016/j.dss.2013.05.007 | es_ES |
dc.description.references | Briguez, C. E., Budán, M. C. D., Deagustini, C. A. D., Maguitman, A. G., Capobianco, M., & Simari, G. R. (2014). Argument-based mixed recommenders and their application to movie suggestion. Expert Systems with Applications, 41(14), 6467-6482. doi:10.1016/j.eswa.2014.03.046 | es_ES |
dc.description.references | Klašnja-Milićević, A., Ivanović, M., & Nanopoulos, A. (2015). Recommender systems in e-learning environments: a survey of the state-of-the-art and possible extensions. Artificial Intelligence Review, 44(4), 571-604. doi:10.1007/s10462-015-9440-z | es_ES |
dc.description.references | The VARK Questionnaire-Spanish Versionhttps://vark-learn.com/wp-content/uploads/2014/08/The-VARK-Questionnaire-Spanish.pdf | es_ES |
dc.description.references | GARCÍA, A. J., & SIMARI, G. R. (2004). Defeasible logic programming: an argumentative approach. Theory and Practice of Logic Programming, 4(1+2), 95-138. doi:10.1017/s1471068403001674 | es_ES |
dc.description.references | Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3-4), 365-385. doi:10.1007/bf03037169 | es_ES |
dc.description.references | Snow, R. E. (1991). Aptitude-treatment interaction as a framework for research on individual differences in psychotherapy. Journal of Consulting and Clinical Psychology, 59(2), 205-216. doi:10.1037/0022-006x.59.2.205 | es_ES |