- -

Recommending Learning Objects with Arguments and Explanations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recommending Learning Objects with Arguments and Explanations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Heras, Stella es_ES
dc.contributor.author Palanca Cámara, Javier es_ES
dc.contributor.author Rodriguez, Paula es_ES
dc.contributor.author Duque-Méndez, Néstor es_ES
dc.contributor.author Julian Inglada, Vicente Javier es_ES
dc.date.accessioned 2021-05-14T03:31:22Z
dc.date.available 2021-05-14T03:31:22Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166335
dc.description.abstract [EN] The massive presence of online learning resources leads many students to have more information than they can consume efficiently. Therefore, students do not always find adaptive learning material for their needs and preferences. In this paper, we present a Conversational Educational Recommender System (C-ERS), which helps students in the process of finding the more appropriated learning resources considering their learning objectives and profile. The recommendation process is based on an argumentation-based approach that selects the learning objects that allow a greater number of arguments to be generated to justify their suitability. Our system includes a simple and intuitive communication interface with the user that provides an explanation to any recommendation. This allows the user to interact with the system and accept or reject the recommendations, providing reasons for such behavior. In this way, the user is able to inspect the system's operation and understand the recommendations, while the system is able to elicit the actual preferences of the user. The system has been tested online with a real group of undergraduate students in the Universidad Nacional de Colombia, showing promising results. es_ES
dc.description.sponsorship This work was partially supported by MINECO/FEDER RTI2018-095390-B-C31 project of the Spanish government, and by the Generalitat Valenciana (PROMETEO/2018/002) project. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Educational recommender systems es_ES
dc.subject Explanations es_ES
dc.subject Argumentation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Recommending Learning Objects with Arguments and Explanations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10103341 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F002/ES/TECNOLOGIES PER ORGANITZACIONS HUMANES EMOCIONALS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Heras, S.; Palanca Cámara, J.; Rodriguez, P.; Duque-Méndez, N.; Julian Inglada, VJ. (2020). Recommending Learning Objects with Arguments and Explanations. Applied Sciences. 10(10):1-18. https://doi.org/10.3390/app10103341 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10103341 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\414592 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Zapalska, A., & Brozik, D. (2006). Learning styles and online education. Campus-Wide Information Systems, 23(5), 325-335. doi:10.1108/10650740610714080 es_ES
dc.description.references Rodríguez, P., Heras, S., Palanca, J., Poveda, J. M., Duque, N., & Julián, V. (2017). An educational recommender system based on argumentation theory. AI Communications, 30(1), 19-36. doi:10.3233/aic-170724 es_ES
dc.description.references Chen, L., & Pu, P. (2011). Critiquing-based recommenders: survey and emerging trends. User Modeling and User-Adapted Interaction, 22(1-2), 125-150. doi:10.1007/s11257-011-9108-6 es_ES
dc.description.references He, C., Parra, D., & Verbert, K. (2016). Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities. Expert Systems with Applications, 56, 9-27. doi:10.1016/j.eswa.2016.02.013 es_ES
dc.description.references Vig, J., Sen, S., & Riedl, J. (2009). Tagsplanations. Proceedings of the 14th international conference on Intelligent user interfaces. doi:10.1145/1502650.1502661 es_ES
dc.description.references Symeonidis, P., Nanopoulos, A., & Manolopoulos, Y. (2009). MoviExplain. Proceedings of the third ACM conference on Recommender systems - RecSys ’09. doi:10.1145/1639714.1639777 es_ES
dc.description.references Fogg, B. J. (2002). Persuasive technology. Ubiquity, 2002(December), 2. doi:10.1145/764008.763957 es_ES
dc.description.references Benbasat, I., & Wang, W. (2005). Trust In and Adoption of Online Recommendation Agents. Journal of the Association for Information Systems, 6(3), 72-101. doi:10.17705/1jais.00065 es_ES
dc.description.references Sikka, R., Dhankhar, A., & Rana, C. (2012). A Survey Paper on E-Learning Recommender System. International Journal of Computer Applications, 47(9), 27-30. doi:10.5120/7218-0024 es_ES
dc.description.references Salehi, M., Pourzaferani, M., & Razavi, S. A. (2013). Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model. Egyptian Informatics Journal, 14(1), 67-78. doi:10.1016/j.eij.2012.12.001 es_ES
dc.description.references Dwivedi, P., & Bharadwaj, K. K. (2013). e-Learning recommender system for a group of learners based on the unified learner profile approach. Expert Systems, 32(2), 264-276. doi:10.1111/exsy.12061 es_ES
dc.description.references Tarus, J. K., Niu, Z., & Mustafa, G. (2017). Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50(1), 21-48. doi:10.1007/s10462-017-9539-5 es_ES
dc.description.references BRIGUEZ, C. E., CAPOBIANCO, M., & MAGUITMAN, A. G. (2013). A THEORETICAL FRAMEWORK FOR TRUST-BASED NEWS RECOMMENDER SYSTEMS AND ITS IMPLEMENTATION USING DEFEASIBLE ARGUMENTATION. International Journal on Artificial Intelligence Tools, 22(04), 1350021. doi:10.1142/s0218213013500218 es_ES
dc.description.references Recio-García, J. A., Quijano, L., & Díaz-Agudo, B. (2013). Including social factors in an argumentative model for Group Decision Support Systems. Decision Support Systems, 56, 48-55. doi:10.1016/j.dss.2013.05.007 es_ES
dc.description.references Briguez, C. E., Budán, M. C. D., Deagustini, C. A. D., Maguitman, A. G., Capobianco, M., & Simari, G. R. (2014). Argument-based mixed recommenders and their application to movie suggestion. Expert Systems with Applications, 41(14), 6467-6482. doi:10.1016/j.eswa.2014.03.046 es_ES
dc.description.references Klašnja-Milićević, A., Ivanović, M., & Nanopoulos, A. (2015). Recommender systems in e-learning environments: a survey of the state-of-the-art and possible extensions. Artificial Intelligence Review, 44(4), 571-604. doi:10.1007/s10462-015-9440-z es_ES
dc.description.references The VARK Questionnaire-Spanish Versionhttps://vark-learn.com/wp-content/uploads/2014/08/The-VARK-Questionnaire-Spanish.pdf es_ES
dc.description.references GARCÍA, A. J., & SIMARI, G. R. (2004). Defeasible logic programming: an argumentative approach. Theory and Practice of Logic Programming, 4(1+2), 95-138. doi:10.1017/s1471068403001674 es_ES
dc.description.references Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3-4), 365-385. doi:10.1007/bf03037169 es_ES
dc.description.references Snow, R. E. (1991). Aptitude-treatment interaction as a framework for research on individual differences in psychotherapy. Journal of Consulting and Clinical Psychology, 59(2), 205-216. doi:10.1037/0022-006x.59.2.205 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem