Mostrar el registro sencillo del ítem
dc.contributor.author | Naskar, Debashis | es_ES |
dc.contributor.author | Singh, Sanasam Ranbir | es_ES |
dc.contributor.author | Kumar, Durgesh | es_ES |
dc.contributor.author | Nandi, Sukumar | es_ES |
dc.contributor.author | Onaindia De La Rivaherrera, Eva | es_ES |
dc.date.accessioned | 2021-05-14T03:31:32Z | |
dc.date.available | 2021-05-14T03:31:32Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 1046-8188 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166339 | |
dc.description.abstract | [EN] Recently, social media has been considered the fastest medium for information broadcasting and sharing. Considering the wide range of applications such as viral marketing, political campaigns, social advertisement, and so on, influencing characteristics of users or tweets have attracted several researchers. It is observed from various studies that influential messages or users create a high impact on a social ecosystem. In this study, we assume that public opinion on a social issue on Twitter carries a certain degree of emotion, and there is an emotion flow underneath the Twitter network. In this article, we investigate social dynamics of emotion present in users' opinions and attempt to understand (i) changing characteristics of users' emotions toward a social issue over time, (ii) influence of public emotions on individuals' emotions, (iii) cause of changing opinion by social factors, and so on. We study users' emotion dynamics over a collection of 17.65M tweets with 69.36K users and observe 63% of the users are likely to change their emotional state against the topic into their subsequent tweets. Tweets were coming from the member community shows higher influencing capability than the other community sources. It is also observed that retweets influence users more than hashtags, mentions, and replies. | es_ES |
dc.description.sponsorship | The work described in this article was carried out in the OSiNT Lab (https://www.iitg.ac.in/cseweb/osint/), Indian Institute of Technology Guwahati, India. The creation of the dataset used in this study was partly supported by the Ministry of Information and Electronic Technology, Government of India. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Association for Computing Machinery | es_ES |
dc.relation.ispartof | ACM Transactions on Information Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Emotion transition | es_ES |
dc.subject | Influence measure | es_ES |
dc.subject | Opinion discussion | es_ES |
dc.subject | Social agreement | es_ES |
dc.subject | Social dynamics | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Emotion Dynamics of Public Opinions on Twitter | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1145/3379340 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Naskar, D.; Singh, SR.; Kumar, D.; Nandi, S.; Onaindia De La Rivaherrera, E. (2020). Emotion Dynamics of Public Opinions on Twitter. ACM Transactions on Information Systems. 38(2):1-24. https://doi.org/10.1145/3379340 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1145/3379340 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\404668 | es_ES |
dc.contributor.funder | Indian Institute of Technology Guwahati | es_ES |
dc.contributor.funder | Ministry of Electronics and Information Technology, India | es_ES |
dc.description.references | Ahmed, S., Jaidka, K., & Cho, J. (2016). Tweeting India’s Nirbhaya protest: a study of emotional dynamics in an online social movement. Social Movement Studies, 16(4), 447-465. doi:10.1080/14742837.2016.1192457 | es_ES |
dc.description.references | Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. I. (2003). Machine Learning, 50(1/2), 5-43. doi:10.1023/a:1020281327116 | es_ES |
dc.description.references | Araujo, T., Neijens, P., & Vliegenthart, R. (2016). Getting the word out on Twitter: the role of influentials, information brokers and strong ties in building word-of-mouth for brands. International Journal of Advertising, 36(3), 496-513. doi:10.1080/02650487.2016.1173765 | es_ES |
dc.description.references | Berger, J. (2011). Arousal Increases Social Transmission of Information. Psychological Science, 22(7), 891-893. doi:10.1177/0956797611413294 | es_ES |
dc.description.references | Bi, B., Tian, Y., Sismanis, Y., Balmin, A., & Cho, J. (2014). Scalable topic-specific influence analysis on microblogs. Proceedings of the 7th ACM international conference on Web search and data mining. doi:10.1145/2556195.2556229 | es_ES |
dc.description.references | Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. doi:10.1016/j.jocs.2010.12.007 | es_ES |
dc.description.references | Chen, W., Wang, C., & Wang, Y. (2010). Scalable influence maximization for prevalent viral marketing in large-scale social networks. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’10. doi:10.1145/1835804.1835934 | es_ES |
dc.description.references | Ding, Z., Jia, Y., Zhou, B., Zhang, J., Han, Y., & Yu, C. (2013). An Influence Strength Measurement via Time-Aware Probabilistic Generative Model for Microblogs. Lecture Notes in Computer Science, 372-383. doi:10.1007/978-3-642-37401-2_38 | es_ES |
dc.description.references | Ding, Z., Wang, H., Guo, L., Qiao, F., Cao, J., & Shen, D. (2015). Finding Influential Users and Popular Contents on Twitter. Web Information Systems Engineering – WISE 2015, 267-275. doi:10.1007/978-3-319-26187-4_23 | es_ES |
dc.description.references | Feldman Barrett, L., & Russell, J. A. (1998). Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology, 74(4), 967-984. doi:10.1037/0022-3514.74.4.967 | es_ES |
dc.description.references | Ferrara, E., & Yang, Z. (2015). Measuring Emotional Contagion in Social Media. PLOS ONE, 10(11), e0142390. doi:10.1371/journal.pone.0142390 | es_ES |
dc.description.references | Hillmann, R., & Trier, M. (2012). Dissemination Patterns and Associated Network Effects of Sentiments in Social Networks. 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. doi:10.1109/asonam.2012.88 | es_ES |
dc.description.references | Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? Proceedings of the 19th international conference on World wide web - WWW ’10. doi:10.1145/1772690.1772751 | es_ES |
dc.description.references | Myers, S. A., Zhu, C., & Leskovec, J. (2012). Information diffusion and external influence in networks. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’12. doi:10.1145/2339530.2339540 | es_ES |
dc.description.references | Nguyen, H. T., Ghosh, P., Mayo, M. L., & Dinh, T. N. (2017). Social Influence Spectrum at Scale. ACM Transactions on Information Systems, 36(2), 1-26. doi:10.1145/3086700 | es_ES |
dc.description.references | Pal, A., & Counts, S. (2011). Identifying topical authorities in microblogs. Proceedings of the fourth ACM international conference on Web search and data mining - WSDM ’11. doi:10.1145/1935826.1935843 | es_ES |
dc.description.references | Peng, S., Wang, G., & Xie, D. (2017). Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges. IEEE Network, 31(1), 11-17. doi:10.1109/mnet.2016.1500104nm | es_ES |
dc.description.references | Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. doi:10.1037/h0077714 | es_ES |
dc.description.references | Shi, J., Hu, P., Lai, K. K., & Chen, G. (2018). Determinants of users’ information dissemination behavior on social networking sites. Internet Research, 28(2), 393-418. doi:10.1108/intr-01-2017-0038 | es_ES |
dc.description.references | Silva, A., Guimarães, S., Meira, W., & Zaki, M. (2013). ProfileRank. Proceedings of the 7th Workshop on Social Network Mining and Analysis - SNAKDD ’13. doi:10.1145/2501025.2501033 | es_ES |
dc.description.references | Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior. Journal of Management Information Systems, 29(4), 217-248. doi:10.2753/mis0742-1222290408 | es_ES |
dc.description.references | Vardasbi, A., Faili, H., & Asadpour, M. (2017). SWIM. ACM Transactions on Information Systems, 36(1), 1-33. doi:10.1145/3072652 | es_ES |
dc.description.references | Wang, Y., Li, Y., Fan, J., & Tan, K.-L. (2018). Location-aware Influence Maximization over Dynamic Social Streams. ACM Transactions on Information Systems, 36(4), 1-35. doi:10.1145/3230871 | es_ES |
dc.description.references | Watts, D. J., & Dodds, P. S. (2007). Influentials, Networks, and Public Opinion Formation. Journal of Consumer Research, 34(4), 441-458. doi:10.1086/518527 | es_ES |
dc.description.references | Weng, J., Lim, E.-P., Jiang, J., & He, Q. (2010). TwitterRank. Proceedings of the third ACM international conference on Web search and data mining - WSDM ’10. doi:10.1145/1718487.1718520 | es_ES |
dc.description.references | Wolfsfeld, G., Segev, E., & Sheafer, T. (2013). Social Media and the Arab Spring. The International Journal of Press/Politics, 18(2), 115-137. doi:10.1177/1940161212471716 | es_ES |
dc.description.references | Yik, M. S. M., Russell, J. A., & Barrett, L. F. (1999). Structure of self-reported current affect: Integration and beyond. Journal of Personality and Social Psychology, 77(3), 600-619. doi:10.1037/0022-3514.77.3.600 | es_ES |
dc.description.references | Zhang, J., Zhang, R., Sun, J., Zhang, Y., & Zhang, C. (2016). TrueTop: A Sybil-Resilient System for User Influence Measurement on Twitter. IEEE/ACM Transactions on Networking, 24(5), 2834-2846. doi:10.1109/tnet.2015.2494059 | es_ES |
dc.description.references | Zhang, Y., Moe, W. W., & Schweidel, D. A. (2017). Modeling the role of message content and influencers in social media rebroadcasting. International Journal of Research in Marketing, 34(1), 100-119. doi:10.1016/j.ijresmar.2016.07.003 | es_ES |
dc.description.references | Ziegler, C.-N., & Lausen, G. (2005). Propagation Models for Trust and Distrust in Social Networks. Information Systems Frontiers, 7(4-5), 337-358. doi:10.1007/s10796-005-4807-3 | es_ES |