- -

Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Brenes, Marco es_ES
dc.contributor.author Solana, Andrea es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Fita, Ana es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Calatayud, Ángeles es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.date.accessioned 2021-05-14T03:31:54Z
dc.date.available 2021-05-14T03:31:54Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166345
dc.description.abstract [EN] Eggplant (Solanum melongena) has been described as moderately sensitive to salinity. We characterised the responses to salt stress of eggplant andS. insanum, its putative wild ancestor. Young plants of two accessions of both species were watered for 25 days with an irrigation solution containing NaCl at concentrations of 0 (control), 50, 100, 200, and 300 mM. Plant growth, photosynthetic activity, concentrations of photosynthetic pigments, K+, Na+, and Cl(-)ions, proline, total soluble sugars, malondialdehyde, total phenolics, and total flavonoids, as well as superoxide dismutase, catalase, and glutathione reductase specific activities, were quantified. Salt stress-induced reduction of growth was greater inS. melongenathan inS. insanum.The photosynthetic activity decreased in both species, except for substomatal CO2 concentration (Ci) inS. insanum, although the photosynthetic pigments were not degraded in the presence of NaCl. The levels of Na+ and Cl(-)increased in roots and leaves with increasing NaCl doses, but leaf K(+)concentrations were maintained, indicating a relative stress tolerance in the two accessions, which also did not seem to suffer a remarkable degree of salt-induced oxidative stress. Our results suggest that the higher salt tolerance ofS. insanummostly lies in its ability to accumulate higher concentrations of proline and, to a lesser extent, Na(+)and Cl-. The results obtained indicate thatS. insanumis a good candidate for improving salt tolerance in eggplant through breeding and introgression programmes. es_ES
dc.description.sponsorship This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing CropWild Relatives", which is supported by the Government of Norway and managed by the Global Crop Diversity Trust. For further information, see the project website: http://cwrdiversity.org/. Funding was also received from Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-100 from MCIU/AEI/FEDER, UE), European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 677379 (Linking genetic resources, genomes, and phenotypes of Solanaceous crops; G2P-SOL) and Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (Ayuda a Primeros Proyectos de Investigacion; PAID-06-18). Mariola Plazas is grateful to Generalitat Valenciana and Fondo Social Europeo for a post-doctoral grant (APOSTD/2018/014). Marco Brenes is indebted to the Faculty of Biology of the Costa Rica Institute of Technology for partially supporting his stay in Valencia ("Fondo Solidario y Desarrollo Estudiantil"). es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Eggplant es_ES
dc.subject Wild relative es_ES
dc.subject Vegetative growth es_ES
dc.subject Photosynthesis es_ES
dc.subject Ion homeostasis es_ES
dc.subject Osmolytes es_ES
dc.subject Oxidative stress es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification BOTANICA es_ES
dc.title Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy10050651 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094592-B-I00/ES/INTROGRESION DE TOLERANCIA A LA SEQUIA PROCEDENTE DE ESPECIES SILVESTRES PARA LA MEJORA GENETICA DE LA BERENJENA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Brenes, M.; Solana, A.; Boscaiu, M.; Fita, A.; Vicente, O.; Calatayud, Á.; Prohens Tomás, J.... (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy. 10(5):1-19. https://doi.org/10.3390/agronomy10050651 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy10050651 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\411708 es_ES
dc.contributor.funder Crop Trust es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Government of Norway es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P., & Ritsema, C. J. (2016). The threat of soil salinity: A European scale review. Science of The Total Environment, 573, 727-739. doi:10.1016/j.scitotenv.2016.08.177 es_ES
dc.description.references Ünlükara, A., Kurunç, A., Kesmez, G. D., Yurtseven, E., & Suarez, D. L. (2008). Effects of salinity on eggplant (Solanum melongenaL.) growth and evapotranspiration. Irrigation and Drainage, n/a-n/a. doi:10.1002/ird.453 es_ES
dc.description.references Mennella, G., Lo Scalzo, R., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Rotino, G. L. (2012). Chemical and Bioactive Quality Traits During Fruit Ripening in Eggplant (S. melongena L.) and Allied Species. Journal of Agricultural and Food Chemistry, 60(47), 11821-11831. doi:10.1021/jf3037424 es_ES
dc.description.references Plazas, M., López-Gresa, M. P., Vilanova, S., Torres, C., Hurtado, M., Gramazio, P., … Prohens, J. (2013). Diversity and Relationships in Key Traits for Functional and Apparent Quality in a Collection of Eggplant: Fruit Phenolics Content, Antioxidant Activity, Polyphenol Oxidase Activity, and Browning. Journal of Agricultural and Food Chemistry, 61(37), 8871-8879. doi:10.1021/jf402429k es_ES
dc.description.references Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34 es_ES
dc.description.references Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477 es_ES
dc.description.references García-Fortea, E., Gramazio, P., Vilanova, S., Fita, A., Mangino, G., Villanueva, G., … Plazas, M. (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturae, 246, 563-573. doi:10.1016/j.scienta.2018.11.018 es_ES
dc.description.references Knapp, S., & Vorontsova, M. (2016). A revision of the «African Non-Spiny» Clade of Solanum L. (Solanum sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Lyciosolanum Bitter, Macronesiotes Bitter, and Quadrangulare Bitter: Solanaceae). PhytoKeys, 66, 1-142. doi:10.3897/phytokeys.66.8457 es_ES
dc.description.references Ranil, R. H. G., Prohens, J., Aubriot, X., Niran, H. M. L., Plazas, M., Fonseka, R. M., … Knapp, S. (2016). Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genetic Resources and Crop Evolution, 64(7), 1707-1722. doi:10.1007/s10722-016-0467-z es_ES
dc.description.references Davidar, P., Snow, A. A., Rajkumar, M., Pasquet, R., Daunay, M.-C., & Mutegi, E. (2015). The potential for crop to wild hybridization in eggplant (Solanum melongena; Solanaceae) in southern India. American Journal of Botany, 102(1), 129-139. doi:10.3732/ajb.1400404 es_ES
dc.description.references Akinci, I. E., Akinci, S., Yilmaz, K., & Dikici, H. (2004). Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealand Journal of Crop and Horticultural Science, 32(2), 193-200. doi:10.1080/01140671.2004.9514296 es_ES
dc.description.references Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030 es_ES
dc.description.references Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES
dc.description.references Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 es_ES
dc.description.references Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 es_ES
dc.description.references Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 es_ES
dc.description.references Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 es_ES
dc.description.references Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 es_ES
dc.description.references Hannachi, S., & Van Labeke, M.-C. (2018). Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 228, 56-65. doi:10.1016/j.scienta.2017.10.002 es_ES
dc.description.references Foolad, M. R. (2004). Recent Advances in Genetics of Salt Tolerance in Tomato. Plant Cell, Tissue and Organ Culture, 76(2), 101-119. doi:10.1023/b:ticu.0000007308.47608.88 es_ES
dc.description.references Plazas, M., Nguyen, H. T., González-Orenga, S., Fita, A., Vicente, O., Prohens, J., & Boscaiu, M. (2019). Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiology and Biochemistry, 143, 72-82. doi:10.1016/j.plaphy.2019.08.031 es_ES
dc.description.references Hanachi, S., Labeke, M. C., & Mehouachi, T. (2014). Application of chlorophyll fluorescence to screen eggplant (Solanum melongena L.) cultivars for salt tolerance. Photosynthetica, 52(1), 57-62. doi:10.1007/s11099-014-0007-z es_ES
dc.description.references RICHARDS, L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. Soil Science, 78(2), 154. doi:10.1097/00010694-195408000-00012 es_ES
dc.description.references Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007 es_ES
dc.description.references González-Orenga, S., Ferrer-Gallego, P. P., Laguna, E., López-Gresa, M. P., Donat-Torres, M. P., Verdeguer, M., … Boscaiu, M. (2019). Insights on Salt Tolerance of Two Endemic Limonium Species from Spain. Metabolites, 9(12), 294. doi:10.3390/metabo9120294 es_ES
dc.description.references Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582 es_ES
dc.description.references Al Hassan, M., Pacurar, A., López-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M., & Vicente, O. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLOS ONE, 11(8), e0160236. doi:10.1371/journal.pone.0160236 es_ES
dc.description.references Jamil, M., Rehman, S. ur, Lee, K. J., Kim, J. M., Kim, H.-S., & Rha, E. S. (2007). Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Scientia Agricola, 64(2), 111-118. doi:10.1590/s0103-90162007000200002 es_ES
dc.description.references Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. doi:10.1016/j.sjbs.2014.12.001 es_ES
dc.description.references Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(1), 18. doi:10.3390/agronomy7010018 es_ES
dc.description.references Wu, X., Zhu, Z., Li, X., & Zha, D. (2012). Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiologiae Plantarum, 34(6), 2105-2114. doi:10.1007/s11738-012-1010-2 es_ES
dc.description.references Shaheen, S., Naseer, S., Ashraf, M., & Akram, N. A. (2013). Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms inSolanum melongenaL. Journal of Plant Interactions, 8(1), 85-96. doi:10.1080/17429145.2012.718376 es_ES
dc.description.references Shahbaz, M., Mushtaq, Z., Andaz, F., & Masood, A. (2013). Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)? Scientia Horticulturae, 164, 507-511. doi:10.1016/j.scienta.2013.10.001 es_ES
dc.description.references Volkov, V. (2015). Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00873 es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references Wu, H., Zhang, X., Giraldo, J. P., & Shabala, S. (2018). It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 431(1-2), 1-17. doi:10.1007/s11104-018-3770-y es_ES
dc.description.references Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00509 es_ES
dc.description.references Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106 es_ES
dc.description.references Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513 es_ES
dc.description.references Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053 es_ES
dc.description.references Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6 es_ES
dc.description.references Gupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1-18. doi:10.1155/2014/701596 es_ES
dc.description.references Sarker, B. C., Hara, M., & Uemura, M. (2005). Proline synthesis, physiological responses and biomass yield of eggplants during and after repetitive soil moisture stress. Scientia Horticulturae, 103(4), 387-402. doi:10.1016/j.scienta.2004.07.010 es_ES
dc.description.references Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 es_ES
dc.description.references Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 es_ES
dc.description.references Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem