- -

Elastomeric cardiopatch scaffold for myocardial repair and ventricular support

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Elastomeric cardiopatch scaffold for myocardial repair and ventricular support

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chachques, Juan Carlos es_ES
dc.contributor.author Lila, Nermine es_ES
dc.contributor.author Soler Botija, Carolina es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.contributor.author Autret, Gwennhael es_ES
dc.contributor.author Perier, Marie-Cecile es_ES
dc.contributor.author Mirochnik, Nicolas es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Bayes-Genis, Antoni es_ES
dc.contributor.author Semino, Carlos E. es_ES
dc.date.accessioned 2021-05-14T12:40:48Z
dc.date.available 2021-05-14T12:40:48Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 1010-7940 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166365
dc.description.abstract [EN] OBJECTIVES: Prevention of postischaemic ventricular dilatation progressing towards pathological remodelling is necessary to decrease ventricular wall deterioration. Myocardial tissue engineering may play a therapeutic role due to its capacity to replace the extracellular matrix, thereby creating niches for cell homing. In this experimental animal study, a biomimetic cardiopatch was created with elastomeric scaffolds and nanotechnologies. METHODS: In an experimental animal study in 18 sheep, a cardiopatch was created with adipose tissue-derived progenitor cells seeded into an engineered bioimplant consisting of 3-dimensional bioabsorbable polycaprolactone scaffolds filled with a peptide hydrogel (PuraMatrix (TM)). This patch was then transplanted to cover infarcted myocardium. Non-absorbable poly(ethyl) acrylate polymer scaffolds were used as controls. RESULTS: Fifteen sheep were followed with ultrasound scans at 6 months, including echocardiography scans, tissue Doppler and spectral flow analysis and speckle-tracking imaging, which showed a reduction in longitudinal left ventricular deformation in the cardiopatch-treated group. Magnetic resonance imaging (late gadolinium enhancement) showed reduction of infarct size relative to left ventricular mass in the cardiopatch group versus the controls. Histopathological analysis at 6 months showed that the cardiopatch was fully anchored and integrated to the infarct area with minimal fibrosis interface, thereby promoting angiogenesis and migration of adipose tissue-derived progenitor cells to surrounding tissues. CONCLUSIONS: This study shows the feasibility and effectiveness of a cardiopatch grafted onto myocardial infarction scars in an experimental animal model. This treatment decreased fibrosis, limited infarct scar expansion and reduced postischaemic ventricular deformity. A capillary network developed between our scaffold and the heart. The elastomeric cardiopatch seems to have a positive impact on ventricular remodelling and performance in patients with heart failure. es_ES
dc.description.sponsorship The RECATABI Project (Regeneration of Cardiac Tissue Assisted by Bioactive Implants) was financially supported by the 7th Framework Programme (FP7) of the European Commission. Project ID: 229239. Funded under FP7-NMP and the European Regional Development Fund (FEDER Spain). es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof European Journal of Cardio-Thoracic Surgery es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heart failure es_ES
dc.subject Cardiac tissue engineering es_ES
dc.subject Elastomeric scaffold es_ES
dc.subject Cardiopatch es_ES
dc.subject Cardiowrap es_ES
dc.subject Translational and clinical research es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Elastomeric cardiopatch scaffold for myocardial repair and ventricular support es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/ejcts/ezz252 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/229239/EU/Regeneration of Cardiac Tissue Assisted by Bioactive Implants/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Chachques, JC.; Lila, N.; Soler Botija, C.; Martínez-Ramos, C.; Vallés Lluch, A.; Autret, G.; Perier, M.... (2020). Elastomeric cardiopatch scaffold for myocardial repair and ventricular support. European Journal of Cardio-Thoracic Surgery. 57(3):545-555. https://doi.org/10.1093/ejcts/ezz252 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/ejcts/ezz252 es_ES
dc.description.upvformatpinicio 545 es_ES
dc.description.upvformatpfin 555 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 31539050 es_ES
dc.relation.pasarela S\404716 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Madonna, R., Van Laake, L. W., Botker, H. E., Davidson, S. M., De Caterina, R., Engel, F. B., … Sluijter, J. P. G. (2019). ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 115(3), 488-500. doi:10.1093/cvr/cvz010 es_ES
dc.description.references Nielsen, S. H., Mouton, A. J., DeLeon-Pennell, K. Y., Genovese, F., Karsdal, M., & Lindsey, M. L. (2019). Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biology, 75-76, 43-57. doi:10.1016/j.matbio.2017.12.001 es_ES
dc.description.references Spinale, F. G., Frangogiannis, N. G., Hinz, B., Holmes, J. W., Kassiri, Z., & Lindsey, M. L. (2016). Crossing Into the Next Frontier of Cardiac Extracellular Matrix Research. Circulation Research, 119(10), 1040-1045. doi:10.1161/circresaha.116.309916 es_ES
dc.description.references Chachques, J. C., Pradas, M. M., Bayes-Genis, A., & Semino, C. (2013). Creating the bioartificial myocardium for cardiac repair: challenges and clinical targets. Expert Review of Cardiovascular Therapy, 11(12), 1701-1711. doi:10.1586/14779072.2013.854165 es_ES
dc.description.references Bayés-Genís, A., Gálvez-Montón, C., & Roura, S. (2016). Cardiac Tissue Engineering. Journal of the American College of Cardiology, 68(7), 724-726. doi:10.1016/j.jacc.2016.05.055 es_ES
dc.description.references Shafy, A., Fink, T., Zachar, V., Lila, N., Carpentier, A., & Chachques, J. C. (2012). Development of cardiac support bioprostheses for ventricular restoration and myocardial regeneration. European Journal of Cardio-Thoracic Surgery, 43(6), 1211-1219. doi:10.1093/ejcts/ezs480 es_ES
dc.description.references Castells-Sala, C., Recha-Sancho, L., Llucià-Valldeperas, A., Soler-Botija, C., Bayes-Genis, A., & Semino, C. E. (2016). Three-Dimensional Cultures of Human Subcutaneous Adipose Tissue-Derived Progenitor Cells Based on RAD16-I Self-Assembling Peptide. Tissue Engineering Part C: Methods, 22(2), 113-124. doi:10.1089/ten.tec.2015.0270 es_ES
dc.description.references Martínez-Ramos, C., Rodríguez-Pérez, E., Garnes, M. P., Chachques, J. C., Moratal, D., Vallés-Lluch, A., & Monleón Pradas, M. (2014). Design and Assembly Procedures for Large-Sized Biohybrid Scaffolds as Patches for Myocardial Infarct. Tissue Engineering Part C: Methods, 20(10), 817-827. doi:10.1089/ten.tec.2013.0489 es_ES
dc.description.references Biswas, M., Sudhakar, S., Nanda, N. C., Buckberg, G., Pradhan, M., Roomi, A. U., … Houle, H. (2013). Two- and Three-Dimensional Speckle Tracking Echocardiography: Clinical Applications and Future Directions. Echocardiography, 30(1), 88-105. doi:10.1111/echo.12079 es_ES
dc.description.references Dorsey, S. M., McGarvey, J. R., Wang, H., Nikou, A., Arama, L., Koomalsingh, K. J., … Burdick, J. A. (2015). MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials, 69, 65-75. doi:10.1016/j.biomaterials.2015.08.011 es_ES
dc.description.references Chachques, J. C. (2009). Cellular cardiac regenerative therapy in which patients? Expert Review of Cardiovascular Therapy, 7(8), 911-919. doi:10.1586/erc.09.84 es_ES
dc.description.references Chachques, J. (1997). Dynamic cardiomyoplasty: clinical follow-up at 12 years. European Journal of Cardio-Thoracic Surgery, 12(4), 560-568. doi:10.1016/s1010-7940(97)00214-5 es_ES
dc.description.references Varela, C. E., Fan, Y., & Roche, E. T. (2019). Optimizing Epicardial Restraint and Reinforcement Following Myocardial Infarction: Moving Towards Localized, Biomimetic, and Multitherapeutic Options. Biomimetics, 4(1), 7. doi:10.3390/biomimetics4010007 es_ES
dc.description.references Van den Borne, S. W. M., Cleutjens, J. P. M., Hanemaaijer, R., Creemers, E. E., Smits, J. F. M., Daemen, M. J. A. P., & Blankesteijn, W. M. (2009). Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovascular Pathology, 18(1), 37-43. doi:10.1016/j.carpath.2007.12.012 es_ES
dc.description.references Ducharme, A., Frantz, S., Aikawa, M., Rabkin, E., Lindsey, M., Rohde, L. E., … Lee, R. T. (2000). Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. Journal of Clinical Investigation, 106(1), 55-62. doi:10.1172/jci8768 es_ES
dc.description.references Sieminski, A. L., Semino, C. E., Gong, H., & Kamm, R. D. (2008). Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. Journal of Biomedical Materials Research Part A, 87A(2), 494-504. doi:10.1002/jbm.a.31785 es_ES
dc.description.references Bagó, J. R., Soler-Botija, C., Casaní, L., Aguilar, E., Alieva, M., Rubio, N., … Blanco, J. (2013). Bioluminescence imaging of cardiomyogenic and vascular differentiation of cardiac and subcutaneous adipose tissue-derived progenitor cells in fibrin patches in a myocardium infarct model. International Journal of Cardiology, 169(4), 288-295. doi:10.1016/j.ijcard.2013.09.013 es_ES
dc.description.references Chachques, J. C., Trainini, J. C., Lago, N., Cortes-Morichetti, M., Schussler, O., & Carpentier, A. (2008). Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM Trial): Clinical Feasibility Study. The Annals of Thoracic Surgery, 85(3), 901-908. doi:10.1016/j.athoracsur.2007.10.052 es_ES
dc.description.references Lee, H., Ahn, S., Bonassar, L. J., & Kim, G. (2012). Cell(MC3T3-E1)-Printed Poly(ϵ-caprolactone)/Alginate Hybrid Scaffolds for Tissue Regeneration. Macromolecular Rapid Communications, 34(2), 142-149. doi:10.1002/marc.201200524 es_ES
dc.description.references Strub, M., Van Bellinghen, X., Fioretti, F., Bornert, F., Benkirane-Jessel, N., Idoux-Gillet, Y., … Clauss, F. (2018). Maxillary Bone Regeneration Based on Nanoreservoirs Functionalizedε-Polycaprolactone Biomembranes in a Mouse Model of Jaw Bone Lesion. BioMed Research International, 2018, 1-12. doi:10.1155/2018/7380389 es_ES
dc.description.references Rohman, G., Huot, S., Vilas-Boas, M., Radu-Bostan, G., Castner, D. G., & Migonney, V. (2015). The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(ε-caprolactone) surface can enhance fibroblast behavior. Journal of Materials Science: Materials in Medicine, 26(7). doi:10.1007/s10856-015-5539-7 es_ES
dc.description.references Spadaccio, C., Nappi, F., De Marco, F., Sedati, P., Taffon, C., Nenna, A., … Rainer, A. (2017). Implantation of a Poly-l-Lactide GCSF-Functionalized Scaffold in a Model of Chronic Myocardial Infarction. Journal of Cardiovascular Translational Research, 10(1), 47-65. doi:10.1007/s12265-016-9718-9 es_ES
dc.description.references Monnet, E., & Chachques, J. C. (2005). Animal Models of Heart Failure: What Is New? The Annals of Thoracic Surgery, 79(4), 1445-1453. doi:10.1016/j.athoracsur.2004.04.002 es_ES
dc.description.references Bellin, G., Gardin, C., Ferroni, L., Chachques, J., Rogante, M., Mitrečić, D., … Zavan, B. (2019). Exosome in Cardiovascular Diseases: A Complex World Full of Hope. Cells, 8(2), 166. doi:10.3390/cells8020166 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem