- -

Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cabrero-Antonino, Maria es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author García-Vallés, Cristina es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-05-14T12:40:59Z
dc.date.available 2021-05-14T12:40:59Z
dc.date.issued 2020-12-01 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166366
dc.description This is the peer reviewed version of the following article: M. Cabrero-Antonino, J. Albero, C. García-Vallés, M. Álvaro, S. Navalón, H. García, Chem. Eur. J. 2020, 26, 15682, which has been published in final form at https://doi.org/10.1002/chem.202003763. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Defect engineering in metal-organic frameworks is commonly performed by using thermal or chemical treatments. Herein we report that oxygen plasma treatment generates structural defects on MIL-125(Ti)-NH2, leading to an increase in its photocatalytic activity. Characterization data indicate that plasma-treated materials retain most of their initial crystallinity, while exhibiting somewhat lower surface area and pore volume. XPS and FT-IR spectroscopy reveal that oxygen plasma induces MIL-125(Ti)-NH2 partial terephthalate decarboxylation and an increase in the Ti-OH population. Thermogravimetric analyses confirm the generation of structural defects by oxygen plasma and allowed an estimation of the resulting experimental formula of the treated MIL-125(Ti)-NH2 solids. SEM analyses show that oxygen plasma treatment of MIL-125(Ti)-NH2 gradually decreases its particle size. Importantly, diffuse reflectance UV/Vis spectroscopy and valence band measurements demonstrate that oxygen plasma treatment alters the MIL-125(Ti)-NH2 band gap and, more significantly, the alignment of highest occupied and lowest unoccupied crystal orbitals. An optimal oxygen plasma treatment to achieve the highest efficiency in water splitting with or without methanol as sacrificial electron donor under UV/Vis or simulated sunlight was determined. The optimized plasma-treated MIL-125(Ti)-NH2 photocatalyst acts as a truly heterogeneous photocatalyst and retains most of its initial photoactivity and crystallinity upon reuse. es_ES
dc.description.sponsorship S.N. thanks the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), the Ministerio de Ciencia, Innovacion y Universidades RTI 2018-099482-A-I00 project, the Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: AICO/2019/214) project, and the AVI project (INNEST/2020/111) for financial support. Financial support by the European Union (LoterCO2M), Spanish Ministry of Science, Innovation and Universities (Severo Ochoa and RTI2018-098237-B-C21), and Generalitat Valenciana (Prometeo 2017-083) is also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Defect engineering es_ES
dc.subject Hydrogen generation es_ES
dc.subject Metal-organic frameworks es_ES
dc.subject Overall water splitting es_ES
dc.subject Visible-light photocatalysis es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.202003763 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/761093/EU/CRM-free Low Temperature Electrochemical Reduction of CO2 to Methanol/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNEST%2F2020%2F111/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Cabrero-Antonino, M.; Albero-Sancho, J.; García-Vallés, C.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2020). Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting. Chemistry - A European Journal. 26(67):15682-15689. https://doi.org/10.1002/chem.202003763 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.202003763 es_ES
dc.description.upvformatpinicio 15682 es_ES
dc.description.upvformatpfin 15689 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 67 es_ES
dc.identifier.pmid 33107125 es_ES
dc.relation.pasarela S\430053 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581 es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metall‐organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 128(18), 5504-5535. doi:10.1002/ange.201505581 es_ES
dc.description.references Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h es_ES
dc.description.references Zhang, T., & Lin, W. (2014). Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43(16), 5982-5993. doi:10.1039/c4cs00103f es_ES
dc.description.references Wang, J.-L., Wang, C., & Lin, W. (2012). Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis, 2(12), 2630-2640. doi:10.1021/cs3005874 es_ES
dc.description.references Wen, M., Mori, K., Kuwahara, Y., An, T., & Yamashita, H. (2018). Design of Single-Site Photocatalysts by Using Metal-Organic Frameworks as a Matrix. Chemistry - An Asian Journal, 13(14), 1767-1779. doi:10.1002/asia.201800444 es_ES
dc.description.references Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829a es_ES
dc.description.references Li, D., Kassymova, M., Cai, X., Zang, S.-Q., & Jiang, H.-L. (2020). Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 412, 213262. doi:10.1016/j.ccr.2020.213262 es_ES
dc.description.references Zhang, T., Jin, Y., Shi, Y., Li, M., Li, J., & Duan, C. (2019). Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 380, 201-229. doi:10.1016/j.ccr.2018.10.001 es_ES
dc.description.references Luo, H., Zeng, Z., Zeng, G., Zhang, C., Xiao, R., Huang, D., … Tian, S. (2020). Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chemical Engineering Journal, 383, 123196. doi:10.1016/j.cej.2019.123196 es_ES
dc.description.references Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919-9986. doi:10.1021/cr5001892 es_ES
dc.description.references Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/s1389-5567(00)00002-2 es_ES
dc.description.references FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001 es_ES
dc.description.references Zhu, J., Li, P.-Z., Guo, W., Zhao, Y., & Zou, R. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 359, 80-101. doi:10.1016/j.ccr.2017.12.013 es_ES
dc.description.references Chen, X., Peng, X., Jiang, L., Yuan, X., Yu, H., Wang, H., … Xia, Q. (2020). Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications. Chemical Engineering Journal, 395, 125080. doi:10.1016/j.cej.2020.125080 es_ES
dc.description.references Remiro-Buenamañana, S., Cabrero-Antonino, M., Martínez-Guanter, M., Álvaro, M., Navalón, S., & García, H. (2019). Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Applied Catalysis B: Environmental, 254, 677-684. doi:10.1016/j.apcatb.2019.05.027 es_ES
dc.description.references An, Y., Xu, B., Liu, Y., Wang, Z., Wang, P., Dai, Y., … Huang, B. (2017). Photocatalytic Overall Water Splitting over MIL-125(Ti) upon CoPi and Pt Co-catalyst Deposition. ChemistryOpen, 6(6), 701-705. doi:10.1002/open.201700100 es_ES
dc.description.references Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350u es_ES
dc.description.references Hisatomi, T., & Domen, K. (2019). Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2(5), 387-399. doi:10.1038/s41929-019-0242-6 es_ES
dc.description.references Nasalevich, M. A., Hendon, C. H., Santaclara, J. G., Svane, K., van der Linden, B., Veber, S. L., … Gascon, J. (2016). Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 6(1). doi:10.1038/srep23676 es_ES
dc.description.references Ma, X., Wang, L., Zhang, Q., & Jiang, H. (2019). Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie International Edition, 58(35), 12175-12179. doi:10.1002/anie.201907074 es_ES
dc.description.references Ma, X., Wang, L., Zhang, Q., & Jiang, H. (2019). Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie, 131(35), 12303-12307. doi:10.1002/ange.201907074 es_ES
dc.description.references De Vos, A., Hendrickx, K., Van Der Voort, P., Van Speybroeck, V., & Lejaeghere, K. (2017). Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 29(7), 3006-3019. doi:10.1021/acs.chemmater.6b05444 es_ES
dc.description.references Taddei, M., Schukraft, G. M., Warwick, M. E. A., Tiana, D., McPherson, M. J., Jones, D. R., & Petit, C. (2019). Band gap modulation in zirconium-based metal–organic frameworks by defect engineering. Journal of Materials Chemistry A, 7(41), 23781-23786. doi:10.1039/c9ta05216j es_ES
dc.description.references Svane, K. L., Bristow, J. K., Gale, J. D., & Walsh, A. (2018). Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure. Journal of Materials Chemistry A, 6(18), 8507-8513. doi:10.1039/c7ta11155j es_ES
dc.description.references Hendrickx, K., Vanpoucke, D. E. P., Leus, K., Lejaeghere, K., Van Yperen-De Deyne, A., Van Speybroeck, V., … Hemelsoet, K. (2015). Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. Inorganic Chemistry, 54(22), 10701-10710. doi:10.1021/acs.inorgchem.5b01593 es_ES
dc.description.references Wang, Z., Zhang, Y., Neyts, E. C., Cao, X., Zhang, X., Jang, B. W.-L., & Liu, C. (2018). Catalyst Preparation with Plasmas: How Does It Work? ACS Catalysis, 8(3), 2093-2110. doi:10.1021/acscatal.7b03723 es_ES
dc.description.references Jiang, Z., Ge, L., Zhuang, L., Li, M., Wang, Z., & Zhu, Z. (2019). Fine-Tuning the Coordinatively Unsaturated Metal Sites of Metal–Organic Frameworks by Plasma Engraving for Enhanced Electrocatalytic Activity. ACS Applied Materials & Interfaces, 11(47), 44300-44307. doi:10.1021/acsami.9b15794 es_ES
dc.description.references Xiang, W., Ren, J., Chen, S., Shen, C., Chen, Y., Zhang, M., & Liu, C. (2020). The metal–organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Applied Energy, 277, 115560. doi:10.1016/j.apenergy.2020.115560 es_ES
dc.description.references Primo, A., Franconetti, A., Magureanu, M., Mandache, N. B., Bucur, C., Rizescu, C., … Garcia, H. (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 20(11), 2611-2623. doi:10.1039/c7gc03397d es_ES
dc.description.references Guo, Y., Gao, X., Zhang, C., Wu, Y., Chang, X., Wang, T., … Li, X. (2019). Plasma modification of a Ni based metal–organic framework for efficient hydrogen evolution. Journal of Materials Chemistry A, 7(14), 8129-8135. doi:10.1039/c9ta00696f es_ES
dc.description.references Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m es_ES
dc.description.references Peng, Y., Rendón-Patiño, A., Franconetti, A., Albero, J., Primo, A., & García, H. (2020). Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials, 3(7), 6623-6632. doi:10.1021/acsaem.0c00789 es_ES
dc.description.references Melillo, A., Cabrero-Antonino, M., Navalón, S., Álvaro, M., Ferrer, B., & García, H. (2020). Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B: Environmental, 278, 119345. doi:10.1016/j.apcatb.2020.119345 es_ES
dc.description.references Ebbesen, T. W., & Ferraudi, G. (1983). Photochemistry of methyl viologen in aqueous and methanolic solutions. The Journal of Physical Chemistry, 87(19), 3717-3721. doi:10.1021/j100242a028 es_ES
dc.description.references García, H., & Navalón, S. (Eds.). (2018). Metal-Organic Frameworks. doi:10.1002/9783527809097 es_ES
dc.description.references Babaryk, A. A., Contreras Almengor, O. R., Cabrero-Antonino, M., Navalón, S., García, H., & Horcajada, P. (2020). A Semiconducting Bi2O2(C4O4) Coordination Polymer Showing a Photoelectric Response. Inorganic Chemistry, 59(6), 3406-3416. doi:10.1021/acs.inorgchem.9b03290 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem