Mostrar el registro sencillo del ítem
dc.contributor.author | Cabrero-Antonino, Maria | es_ES |
dc.contributor.author | Albero-Sancho, Josep | es_ES |
dc.contributor.author | García-Vallés, Cristina | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2021-05-14T12:40:59Z | |
dc.date.available | 2021-05-14T12:40:59Z | |
dc.date.issued | 2020-12-01 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166366 | |
dc.description | This is the peer reviewed version of the following article: M. Cabrero-Antonino, J. Albero, C. García-Vallés, M. Álvaro, S. Navalón, H. García, Chem. Eur. J. 2020, 26, 15682, which has been published in final form at https://doi.org/10.1002/chem.202003763. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Defect engineering in metal-organic frameworks is commonly performed by using thermal or chemical treatments. Herein we report that oxygen plasma treatment generates structural defects on MIL-125(Ti)-NH2, leading to an increase in its photocatalytic activity. Characterization data indicate that plasma-treated materials retain most of their initial crystallinity, while exhibiting somewhat lower surface area and pore volume. XPS and FT-IR spectroscopy reveal that oxygen plasma induces MIL-125(Ti)-NH2 partial terephthalate decarboxylation and an increase in the Ti-OH population. Thermogravimetric analyses confirm the generation of structural defects by oxygen plasma and allowed an estimation of the resulting experimental formula of the treated MIL-125(Ti)-NH2 solids. SEM analyses show that oxygen plasma treatment of MIL-125(Ti)-NH2 gradually decreases its particle size. Importantly, diffuse reflectance UV/Vis spectroscopy and valence band measurements demonstrate that oxygen plasma treatment alters the MIL-125(Ti)-NH2 band gap and, more significantly, the alignment of highest occupied and lowest unoccupied crystal orbitals. An optimal oxygen plasma treatment to achieve the highest efficiency in water splitting with or without methanol as sacrificial electron donor under UV/Vis or simulated sunlight was determined. The optimized plasma-treated MIL-125(Ti)-NH2 photocatalyst acts as a truly heterogeneous photocatalyst and retains most of its initial photoactivity and crystallinity upon reuse. | es_ES |
dc.description.sponsorship | S.N. thanks the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), the Ministerio de Ciencia, Innovacion y Universidades RTI 2018-099482-A-I00 project, the Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: AICO/2019/214) project, and the AVI project (INNEST/2020/111) for financial support. Financial support by the European Union (LoterCO2M), Spanish Ministry of Science, Innovation and Universities (Severo Ochoa and RTI2018-098237-B-C21), and Generalitat Valenciana (Prometeo 2017-083) is also gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Defect engineering | es_ES |
dc.subject | Hydrogen generation | es_ES |
dc.subject | Metal-organic frameworks | es_ES |
dc.subject | Overall water splitting | es_ES |
dc.subject | Visible-light photocatalysis | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.202003763 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/761093/EU/CRM-free Low Temperature Electrochemical Reduction of CO2 to Methanol/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNEST%2F2020%2F111/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Cabrero-Antonino, M.; Albero-Sancho, J.; García-Vallés, C.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2020). Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting. Chemistry - A European Journal. 26(67):15682-15689. https://doi.org/10.1002/chem.202003763 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.202003763 | es_ES |
dc.description.upvformatpinicio | 15682 | es_ES |
dc.description.upvformatpfin | 15689 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 67 | es_ES |
dc.identifier.pmid | 33107125 | es_ES |
dc.relation.pasarela | S\430053 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Agència Valenciana de la Innovació | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metall‐organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 128(18), 5504-5535. doi:10.1002/ange.201505581 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h | es_ES |
dc.description.references | Zhang, T., & Lin, W. (2014). Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43(16), 5982-5993. doi:10.1039/c4cs00103f | es_ES |
dc.description.references | Wang, J.-L., Wang, C., & Lin, W. (2012). Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis, 2(12), 2630-2640. doi:10.1021/cs3005874 | es_ES |
dc.description.references | Wen, M., Mori, K., Kuwahara, Y., An, T., & Yamashita, H. (2018). Design of Single-Site Photocatalysts by Using Metal-Organic Frameworks as a Matrix. Chemistry - An Asian Journal, 13(14), 1767-1779. doi:10.1002/asia.201800444 | es_ES |
dc.description.references | Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829a | es_ES |
dc.description.references | Li, D., Kassymova, M., Cai, X., Zang, S.-Q., & Jiang, H.-L. (2020). Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 412, 213262. doi:10.1016/j.ccr.2020.213262 | es_ES |
dc.description.references | Zhang, T., Jin, Y., Shi, Y., Li, M., Li, J., & Duan, C. (2019). Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 380, 201-229. doi:10.1016/j.ccr.2018.10.001 | es_ES |
dc.description.references | Luo, H., Zeng, Z., Zeng, G., Zhang, C., Xiao, R., Huang, D., … Tian, S. (2020). Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chemical Engineering Journal, 383, 123196. doi:10.1016/j.cej.2019.123196 | es_ES |
dc.description.references | Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919-9986. doi:10.1021/cr5001892 | es_ES |
dc.description.references | Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/s1389-5567(00)00002-2 | es_ES |
dc.description.references | FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001 | es_ES |
dc.description.references | Zhu, J., Li, P.-Z., Guo, W., Zhao, Y., & Zou, R. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 359, 80-101. doi:10.1016/j.ccr.2017.12.013 | es_ES |
dc.description.references | Chen, X., Peng, X., Jiang, L., Yuan, X., Yu, H., Wang, H., … Xia, Q. (2020). Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications. Chemical Engineering Journal, 395, 125080. doi:10.1016/j.cej.2020.125080 | es_ES |
dc.description.references | Remiro-Buenamañana, S., Cabrero-Antonino, M., Martínez-Guanter, M., Álvaro, M., Navalón, S., & García, H. (2019). Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Applied Catalysis B: Environmental, 254, 677-684. doi:10.1016/j.apcatb.2019.05.027 | es_ES |
dc.description.references | An, Y., Xu, B., Liu, Y., Wang, Z., Wang, P., Dai, Y., … Huang, B. (2017). Photocatalytic Overall Water Splitting over MIL-125(Ti) upon CoPi and Pt Co-catalyst Deposition. ChemistryOpen, 6(6), 701-705. doi:10.1002/open.201700100 | es_ES |
dc.description.references | Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350u | es_ES |
dc.description.references | Hisatomi, T., & Domen, K. (2019). Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2(5), 387-399. doi:10.1038/s41929-019-0242-6 | es_ES |
dc.description.references | Nasalevich, M. A., Hendon, C. H., Santaclara, J. G., Svane, K., van der Linden, B., Veber, S. L., … Gascon, J. (2016). Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 6(1). doi:10.1038/srep23676 | es_ES |
dc.description.references | Ma, X., Wang, L., Zhang, Q., & Jiang, H. (2019). Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie International Edition, 58(35), 12175-12179. doi:10.1002/anie.201907074 | es_ES |
dc.description.references | Ma, X., Wang, L., Zhang, Q., & Jiang, H. (2019). Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie, 131(35), 12303-12307. doi:10.1002/ange.201907074 | es_ES |
dc.description.references | De Vos, A., Hendrickx, K., Van Der Voort, P., Van Speybroeck, V., & Lejaeghere, K. (2017). Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 29(7), 3006-3019. doi:10.1021/acs.chemmater.6b05444 | es_ES |
dc.description.references | Taddei, M., Schukraft, G. M., Warwick, M. E. A., Tiana, D., McPherson, M. J., Jones, D. R., & Petit, C. (2019). Band gap modulation in zirconium-based metal–organic frameworks by defect engineering. Journal of Materials Chemistry A, 7(41), 23781-23786. doi:10.1039/c9ta05216j | es_ES |
dc.description.references | Svane, K. L., Bristow, J. K., Gale, J. D., & Walsh, A. (2018). Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure. Journal of Materials Chemistry A, 6(18), 8507-8513. doi:10.1039/c7ta11155j | es_ES |
dc.description.references | Hendrickx, K., Vanpoucke, D. E. P., Leus, K., Lejaeghere, K., Van Yperen-De Deyne, A., Van Speybroeck, V., … Hemelsoet, K. (2015). Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. Inorganic Chemistry, 54(22), 10701-10710. doi:10.1021/acs.inorgchem.5b01593 | es_ES |
dc.description.references | Wang, Z., Zhang, Y., Neyts, E. C., Cao, X., Zhang, X., Jang, B. W.-L., & Liu, C. (2018). Catalyst Preparation with Plasmas: How Does It Work? ACS Catalysis, 8(3), 2093-2110. doi:10.1021/acscatal.7b03723 | es_ES |
dc.description.references | Jiang, Z., Ge, L., Zhuang, L., Li, M., Wang, Z., & Zhu, Z. (2019). Fine-Tuning the Coordinatively Unsaturated Metal Sites of Metal–Organic Frameworks by Plasma Engraving for Enhanced Electrocatalytic Activity. ACS Applied Materials & Interfaces, 11(47), 44300-44307. doi:10.1021/acsami.9b15794 | es_ES |
dc.description.references | Xiang, W., Ren, J., Chen, S., Shen, C., Chen, Y., Zhang, M., & Liu, C. (2020). The metal–organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Applied Energy, 277, 115560. doi:10.1016/j.apenergy.2020.115560 | es_ES |
dc.description.references | Primo, A., Franconetti, A., Magureanu, M., Mandache, N. B., Bucur, C., Rizescu, C., … Garcia, H. (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 20(11), 2611-2623. doi:10.1039/c7gc03397d | es_ES |
dc.description.references | Guo, Y., Gao, X., Zhang, C., Wu, Y., Chang, X., Wang, T., … Li, X. (2019). Plasma modification of a Ni based metal–organic framework for efficient hydrogen evolution. Journal of Materials Chemistry A, 7(14), 8129-8135. doi:10.1039/c9ta00696f | es_ES |
dc.description.references | Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m | es_ES |
dc.description.references | Peng, Y., Rendón-Patiño, A., Franconetti, A., Albero, J., Primo, A., & García, H. (2020). Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials, 3(7), 6623-6632. doi:10.1021/acsaem.0c00789 | es_ES |
dc.description.references | Melillo, A., Cabrero-Antonino, M., Navalón, S., Álvaro, M., Ferrer, B., & García, H. (2020). Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B: Environmental, 278, 119345. doi:10.1016/j.apcatb.2020.119345 | es_ES |
dc.description.references | Ebbesen, T. W., & Ferraudi, G. (1983). Photochemistry of methyl viologen in aqueous and methanolic solutions. The Journal of Physical Chemistry, 87(19), 3717-3721. doi:10.1021/j100242a028 | es_ES |
dc.description.references | García, H., & Navalón, S. (Eds.). (2018). Metal-Organic Frameworks. doi:10.1002/9783527809097 | es_ES |
dc.description.references | Babaryk, A. A., Contreras Almengor, O. R., Cabrero-Antonino, M., Navalón, S., García, H., & Horcajada, P. (2020). A Semiconducting Bi2O2(C4O4) Coordination Polymer Showing a Photoelectric Response. Inorganic Chemistry, 59(6), 3406-3416. doi:10.1021/acs.inorgchem.9b03290 | es_ES |