- -

Logistic models for distribution of straw in crops of fruit tree plots where mulch is applied

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Logistic models for distribution of straw in crops of fruit tree plots where mulch is applied

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Velázquez Martí, Borja es_ES
dc.contributor.author Torregrosa, A. es_ES
dc.date.accessioned 2021-05-14T12:41:13Z
dc.date.available 2021-05-14T12:41:13Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 0168-1699 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166372
dc.description.abstract [EN] This work presents three models for the linking of fruit tree plots which are receptors of rice straw that is applied as mulch, with other straw suppliers plots, whose straw is a byproduct of cultivating cereal. The mulch is applied to fruit tree plots in order to save irrigation water, to reduce the incidence of weeds and to reduce erosion. In other words, they intend to assign a set of supplier plots to each straw receiving plot. Each model solves the problem in one scenario. The first one considers the direct application of straw to a single plot which must be supplied to apply the mulch from several plots. Therefore, these must be selected from a set that act as suppliers. It is not considered prior storage or collection. The second scenario also involves a direct application but in several receiving target plots from several source supplier plots without storage or intermediate storage. The third scenario develops a model that groups provider plots with different collection points; It offers a system that selects the location of the storage points and associates each storage point with a group of receiving plots. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Electronics in Agriculture es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Feedstock distribution es_ES
dc.subject Mulch application es_ES
dc.subject Plot linking es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Logistic models for distribution of straw in crops of fruit tree plots where mulch is applied es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compag.2020.105604 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC-2017-6249-2/ES/Desarrollo de un nuevo insumo para la agricultura sostenible: mulch de paja de arroz con incorporación de bacterias promotoras del crecimiento de las plantas (PGPB) y mecanización integral de procesos. (SMART MULCH)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Velázquez Martí, B.; Torregrosa, A. (2020). Logistic models for distribution of straw in crops of fruit tree plots where mulch is applied. Computers and Electronics in Agriculture. 175:1-14. https://doi.org/10.1016/j.compag.2020.105604 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compag.2020.105604 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 175 es_ES
dc.relation.pasarela S\415128 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Amiama, C., Bueno, J., Álvarez, C. J., & Pereira, J. M. (2008). Design and field test of an automatic data acquisition system in a self-propelled forage harvester. Computers and Electronics in Agriculture, 61(2), 192-200. doi:10.1016/j.compag.2007.11.006 es_ES
dc.description.references Bakker, M. M., Govers, G., & Rounsevell, M. D. . (2004). The crop productivity–erosion relationship: an analysis based on experimental work. CATENA, 57(1), 55-76. doi:10.1016/j.catena.2003.07.002 es_ES
dc.description.references Buckmaster, D. R., & Hilton, J. W. (2005). Computerized cycle analysis of harvest, transport, and unload systems. Computers and Electronics in Agriculture, 47(2), 137-147. doi:10.1016/j.compag.2004.11.015 es_ES
dc.description.references Cerdà, A., González-Pelayo, Ó., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., … Ritsema, C. J. (2016). Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency–high magnitude simulated rainfall events. Soil Research, 54(2), 154. doi:10.1071/sr15092 es_ES
dc.description.references Chen, J., Saunders, S. C., Crow, T. R., Naiman, R. J., Brosofske, K. D., Mroz, G. D., … Franklin, J. F. (1999). Microclimate in Forest Ecosystem and Landscape Ecology. BioScience, 49(4), 288-297. doi:10.2307/1313612 es_ES
dc.description.references Garzó, A., 2017. El humo de la quema de la paja de arroz se extiende por la Costera, la Canal y la Vall. http://www.levante-emv.com/costera/2017/10/12/humo-quema-paja-arroz-extiende/1626933.html (8/12/2017). es_ES
dc.description.references Gracia, C., Velázquez-Martí, B., & Estornell, J. (2014). An application of the vehicle routing problem to biomass transportation. Biosystems Engineering, 124, 40-52. doi:10.1016/j.biosystemseng.2014.06.009 es_ES
dc.description.references MAPA, 2020. Anuario de Estadística Agraria 2018. Ministry of Agriculture, Fisheries and Food (Spain). https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/default.aspx. es_ES
dc.description.references Ola, A., Dodd, I. C., & Quinton, J. N. (2015). Can we manipulate root system architecture to control soil erosion? SOIL, 1(2), 603-612. doi:10.5194/soil-1-603-2015 es_ES
dc.description.references Ossoml, E.M., Pace, P.F., Rhykerd, R.L., Rhyker, C.L., 2001. Effect of mulch on weed infestation, soil temperature, nutrient concentration, and tuber yield in Ipomoea batatas (L.) Lam. in Papua New Guinea. Tropical agriculture. es_ES
dc.description.references Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., & Cerdà, A. (2016). The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 323-330. doi:10.1016/j.scitotenv.2015.12.076 es_ES
dc.description.references Rahman, M. A., Chikushi, J., Saifizzaman, M., & Lauren, J. G. (2005). Rice straw mulching and nitrogen response of no-till wheat following rice in Bangladesh. Field Crops Research, 91(1), 71-81. doi:10.1016/j.fcr.2004.06.010 es_ES
dc.description.references Ramakrishna, A., Tam, H. M., Wani, S. P., & Long, T. D. (2006). Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Research, 95(2-3), 115-125. doi:10.1016/j.fcr.2005.01.030 es_ES
dc.description.references B. Velazquez-Marti, & E. Annevelink. (2009). GIS Application to Define Biomass Collection Points as Sources for Linear Programming of Delivery Networks. Transactions of the ASABE, 52(4), 1069-1078. doi:10.13031/2013.27776 es_ES
dc.description.references Velazquez-Marti, B., & Fernandez-Gonzalez, E. (2010). Mathematical algorithms to locate factories to transform biomass in bioenergy focused on logistic network construction. Renewable Energy, 35(9), 2136-2142. doi:10.1016/j.renene.2010.02.011 es_ES
dc.description.references Wu, C. L., Chau, K. W., & Huang, J. S. (2007). Modelling coupled water and heat transport in a soil–mulch–plant–atmosphere continuum (SMPAC) system. Applied Mathematical Modelling, 31(2), 152-169. doi:10.1016/j.apm.2005.08.018 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem