- -

Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cherpinski, Adriane es_ES
dc.contributor.author Gozutok, Melike es_ES
dc.contributor.author Turkoglu Sasmazel, Hilal es_ES
dc.contributor.author Torres-Giner, Sergio es_ES
dc.contributor.author Lagaron, Jose M. es_ES
dc.date.accessioned 2021-05-18T03:30:38Z
dc.date.available 2021-05-18T03:30:38Z
dc.date.issued 2018-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166454
dc.description.abstract [EN] This paper reports on the development and characterization of oxygen scavenging films made of poly(3-hydroxybutyrate) (PHB) containing palladium nanoparticles (PdNPs) prepared by electrospinning followed by annealing treatment at 160 degrees C. The PdNPs were modified with the intention to optimize their dispersion and distribution in PHB by means of two different surfactants permitted for food contact applications, i.e., hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS). Analysis of the morphology and characterization of the chemical, thermal, mechanical, and water and limonene vapor barrier properties and the oxygen scavenging capacity of the various PHB materials were carried out. From the results, it was seen that a better dispersion and distribution was obtained using CTAB as the dispersing aid. As a result, the PHB/PdNP nanocomposites containing CTAB provided also the best oxygen scavenging performance. These films offer a significant potential as new active coating or interlayer systems for application in the design of novel active food packaging structures. es_ES
dc.description.sponsorship This research has received funding from the Spanish Ministry of Economy and Competitiveness (MINECO, project AGL2015-63855-C2-1-R) and the EU H2020 project YPACK (reference number 773872). A.C. and S.T.-G. would like to thank the Brazilian Council for Scientific and Technological Development (CNPq) and MINECO for her predoctoral grant (205955/2014-2) and his Juan de la Cierva contract (IJCI-2016-29675), respectively. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Polyhydroxyalkanoates es_ES
dc.subject Palladium nanoparticles es_ES
dc.subject Packaging es_ES
dc.subject Electrospinning es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano8070469 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//205955%2F2014-2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Cherpinski, A.; Gozutok, M.; Turkoglu Sasmazel, H.; Torres-Giner, S.; Lagaron, JM. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials. 8(7):1-19. https://doi.org/10.3390/nano8070469 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano8070469 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.identifier.pmid 29954085 es_ES
dc.identifier.pmcid PMC6071038 es_ES
dc.relation.pasarela S\427503 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Puglia, D., Fortunati, E., D’Amico, D. A., Manfredi, L. B., Cyras, V. P., & Kenny, J. M. (2014). Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 99, 127-135. doi:10.1016/j.polymdegradstab.2013.11.013 es_ES
dc.description.references Ma, P., Xu, P., Chen, M., Dong, W., Cai, X., Schmit, P., … Lemstra, P. J. (2014). Structure–property relationships of reactively compatibilized PHB/EVA/starch blends. Carbohydrate Polymers, 108, 299-306. doi:10.1016/j.carbpol.2014.02.058 es_ES
dc.description.references Molinaro, S., Cruz Romero, M., Boaro, M., Sensidoni, A., Lagazio, C., Morris, M., & Kerry, J. (2013). Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. Journal of Food Engineering, 117(1), 113-123. doi:10.1016/j.jfoodeng.2013.01.021 es_ES
dc.description.references Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019 es_ES
dc.description.references Bittmann, B., Bouza, R., Barral, L., Diez, J., & Ramirez, C. (2013). Poly(3-hydroxybutyrate-co -3-hydroxyvalerate)/clay nanocomposites for replacement of mineral oil based materials. Polymer Composites, 34(7), 1033-1040. doi:10.1002/pc.22510 es_ES
dc.description.references Castro-Mayorga, J. L., Fabra, M. J., & Lagaron, J. M. (2016). Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innovative Food Science & Emerging Technologies, 33, 524-533. doi:10.1016/j.ifset.2015.10.019 es_ES
dc.description.references Bartczak, Z., Galeski, A., Kowalczuk, M., Sobota, M., & Malinowski, R. (2013). Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal, 49(11), 3630-3641. doi:10.1016/j.eurpolymj.2013.07.033 es_ES
dc.description.references Furukawa, T., Sato, H., Murakami, R., Zhang, J., Duan, Y.-X., Noda, I., … Ozaki, Y. (2005). Structure, Dispersibility, and Crystallinity of Poly(hydroxybutyrate)/Poly(l-lactic acid) Blends Studied by FT-IR Microspectroscopy and Differential Scanning Calorimetry. Macromolecules, 38(15), 6445-6454. doi:10.1021/ma0504668 es_ES
dc.description.references Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. doi:10.1002/adv.20235 es_ES
dc.description.references Yildirim, S., Röcker, B., Rüegg, N., & Lohwasser, W. (2015). Development of Palladium-based Oxygen Scavenger: Optimization of Substrate and Palladium Layer Thickness. Packaging Technology and Science, 28(8), 710-718. doi:10.1002/pts.2134 es_ES
dc.description.references Cernohorsky, O., Zdansky, K., Zavadil, J., Kacerovsky, P., & Piksova, K. (2011). Palladium nanoparticles on InP for hydrogen detection. Nanoscale Research Letters, 6(1). doi:10.1186/1556-276x-6-410 es_ES
dc.description.references Damaj, Z., Joly, C., & Guillon, E. (2014). Toward New Polymeric Oxygen Scavenging Systems: Formation of Poly(vinyl alcohol) Oxygen Scavenger Film. Packaging Technology and Science, 28(4), 293-302. doi:10.1002/pts.2112 es_ES
dc.description.references Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274 es_ES
dc.description.references Echegoyen, Y., Fabra, M. J., Castro-Mayorga, J. L., Cherpinski, A., & Lagaron, J. M. (2017). High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint. Trends in Food Science & Technology, 60, 71-79. doi:10.1016/j.tifs.2016.10.019 es_ES
dc.description.references Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103-S112. doi:10.1016/j.tifs.2008.09.011 es_ES
dc.description.references Kundu, S. (2013). A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies. J. Mater. Chem. C, 1(4), 831-842. doi:10.1039/c2tc00315e es_ES
dc.description.references Mayer, A., & Antonietti, M. (1998). Investigation of polymer-protected noble metal nanoparticles by transmission electron microscopy: control of particle morphology and shape. Colloid & Polymer Science, 276(9), 769-779. doi:10.1007/s003960050309 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Tekmen, C., Tsunekawa, Y., & Nakanishi, H. (2010). Electrospinning of carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles. Journal of Materials Processing Technology, 210(3), 451-455. doi:10.1016/j.jmatprotec.2009.10.006 es_ES
dc.description.references Sainudeen, S. S., Asok, L. B., Varghese, A., Nair, A. S., & Krishnan, G. (2017). Surfactant-driven direct synthesis of a hierarchical hollow MgO nanofiber–nanoparticle composite by electrospinning. RSC Advances, 7(56), 35160-35168. doi:10.1039/c7ra05812h es_ES
dc.description.references Sakai, S., Kawakami, K., & Taya, M. (2012). Controlling the Diameters of Silica Nanofibers Obtained by Sol–Gel/Electrospinning Methods. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 45(6), 436-440. doi:10.1252/jcej.11we249 es_ES
dc.description.references Castro-Mayorga, J., Fabra, M., Cabedo, L., & Lagaron, J. (2016). On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials, 7(1), 4. doi:10.3390/nano7010004 es_ES
dc.description.references Martínez-Abad, A., Sanchez, G., Lagaron, J. M., & Ocio, M. J. (2012). Influence of speciation in the release profiles and antimicrobial performance of electrospun ethylene vinyl alcohol copolymer (EVOH) fibers containing ionic silver ions and silver nanoparticles. Colloid and Polymer Science, 291(6), 1381-1392. doi:10.1007/s00396-012-2870-0 es_ES
dc.description.references Shaukat, M. S., Zulfiqar, S., & Sarwar, M. I. (2015). Incorporation of palladium nanoparticles into aromatic polyamide/clay nanocomposites through facile dry route. Polymer Science Series B, 57(4), 380-386. doi:10.1134/s1560090415040120 es_ES
dc.description.references Yeo, S. Y., Tan, W. L., Abu Bakar, M., & Ismail, J. (2010). Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: Thermal stability and kinetic analysis of thermal degradation. Polymer Degradation and Stability, 95(8), 1299-1304. doi:10.1016/j.polymdegradstab.2010.02.025 es_ES
dc.description.references Díez-Pascual, A., & Díez-Vicente, A. (2014). Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences, 15(6), 10950-10973. doi:10.3390/ijms150610950 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Primeau, N., Vautey, C., & Langlet, M. (1997). The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study. Thin Solid Films, 310(1-2), 47-56. doi:10.1016/s0040-6090(97)00340-4 es_ES
dc.description.references Pachekoski, W. M., Dalmolin, C., & Agnelli, J. A. M. (2012). The influence of the industrial processing on the degradation of poly(hidroxybutyrate) - PHB. Materials Research, 16(2), 237-332. doi:10.1590/s1516-14392012005000180 es_ES
dc.description.references Mottin, A. C., Ayres, E., Oréfice, R. L., & Câmara, J. J. D. (2016). What Changes in Poly(3-Hydroxybutyrate) (PHB) When Processed as Electrospun Nanofibers or Thermo-Compression Molded Film? Materials Research, 19(1), 57-66. doi:10.1590/1980-5373-mr-2015-0280 es_ES
dc.description.references Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 45(4), 967-984. doi:10.1016/j.eurpolymj.2009.01.027 es_ES
dc.description.references Terada, M., & Marchessault, R. H. (1999). Determination of solubility parameters for poly(3-hydroxyalkanoates). International Journal of Biological Macromolecules, 25(1-3), 207-215. doi:10.1016/s0141-8130(99)00036-7 es_ES
dc.description.references Tan, B., & Thomas, N. L. (2016). A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. Journal of Membrane Science, 514, 595-612. doi:10.1016/j.memsci.2016.05.026 es_ES
dc.description.references Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626. doi:10.1080/19440049.2010.506601 es_ES
dc.description.references Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327-335. doi:10.1016/j.foodhyd.2013.04.002 es_ES
dc.description.references Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041 es_ES
dc.description.references Nyberg, C., & Tengstål, C. G. (1984). Adsorption and reaction of water, oxygen, and hydrogen on Pd(100): Identification of adsorbed hydroxyl and implications for the catalytic H2–O2 reaction. The Journal of Chemical Physics, 80(7), 3463-3468. doi:10.1063/1.447102 es_ES
dc.description.references Singh, L. P., Bhattacharyya, S. K., Mishra, G., & Ahalawat, S. (2011). Functional role of cationic surfactant to control the nano size of silica powder. Applied Nanoscience, 1(3), 117-122. doi:10.1007/s13204-011-0016-1 es_ES
dc.description.references Nestorson, A., Neoh, K. G., Kang, E. T., Järnström, L., & Leufvén, A. (2008). Enzyme immobilization in latex dispersion coatings for active food packaging. Packaging Technology and Science, 21(4), 193-205. doi:10.1002/pts.796 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem