Mostrar el registro sencillo del ítem
dc.contributor.author | Pastor, José V. | es_ES |
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | Mico Reche, Carlos | es_ES |
dc.contributor.author | De Vargas Lewiski, Felipe | es_ES |
dc.date.accessioned | 2021-05-20T03:32:34Z | |
dc.date.available | 2021-05-20T03:32:34Z | |
dc.date.issued | 2020-02-15 | es_ES |
dc.identifier.issn | 0306-2619 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166515 | |
dc.description.abstract | [EN] Synthetic fuels (E-fuels) have shown to be an interesting alternative to replace the fossil diesel fuel due to its CO2 reduction potential as well as for their capability to diminish the soot production and therefore for improving the soot-NOX trade-off in Compression Ignition engines. Thus, the main objective of this paper was to better understand the combustion process and the in-cylinder soot formation of two of the most popular E-fuels currently: Fischer-Tropsch (FT) diesel and Oxymethylene dimethyl ether (OMEX). To achieve this aim, a single cylinder optical CI engine with a commercial piston geometry was used. Thee optical techniques (Natural Luminosity-NL, OH* chemiluminescence and 2-color pyrometry) were applied to analyze the combustion evolution and quantify the soot formation at different loads (1.5, 4.5 and 7.5 bar IMEP). OMEX presented the largest injection duration due to the low LHV. For the NL analysis, OMEX showed the lowest light intensity for the three loads tested, indicating a very low soot production. Despite of the low NL intensity, it presented the highest OH* chemiluminescence signal, indicating a higher presence of near-stoichiometric zones due to the high amount of oxygen. Regarding FT diesel, it showed a combustion behavior similar to the commercial diesel. NL, OH* and 2-color technique analysis indicated that for the three conditions tested, FT diesel presented lower soot production and a faster soot oxidation than commercial diesel. | es_ES |
dc.description.sponsorship | This work was partially funded by Generalitat Valenciana through the Programa Santiago Grisolia (GRISOLIAP/2018/142) program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Energy | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | E-fuels | es_ES |
dc.subject | Soot reduction | es_ES |
dc.subject | OMEX | es_ES |
dc.subject | FT diesel | es_ES |
dc.subject | Oxygenated fuels | es_ES |
dc.subject | Optical engines | es_ES |
dc.subject | Optical Techniques | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.apenergy.2019.114238 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F142/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Pastor, JV.; García Martínez, A.; Mico Reche, C.; De Vargas Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy. 260:1-12. https://doi.org/10.1016/j.apenergy.2019.114238 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.apenergy.2019.114238 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 260 | es_ES |
dc.relation.pasarela | S\398815 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 | es_ES |
dc.description.references | Dronniou, N., Kashdan, J., Lecointe, B., Sauve, K., & Soleri, D. (2014). Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions. SAE International Journal of Engines, 7(2), 873-887. doi:10.4271/2014-01-1313 | es_ES |
dc.description.references | Tanov, S., Wang, Z., Wang, H., Richter, M., & Johansson, B. (2015). Effects of Injection Strategies on Fluid Flow and Turbulence in Partially Premixed Combustion (PPC) in a Light Duty Engine. SAE Technical Paper Series. doi:10.4271/2015-24-2455 | es_ES |
dc.description.references | Zha, K., Busch, S., Warey, A., Peterson, R. C., & Kurtz, E. (2018). A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry. SAE International Journal of Engines, 11(6), 783-804. doi:10.4271/2018-01-0230 | es_ES |
dc.description.references | Omari, A., Heuser, B., Pischinger, S., & Rüdinger, C. (2019). Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines. Applied Energy, 239, 1242-1249. doi:10.1016/j.apenergy.2019.02.035 | es_ES |
dc.description.references | Hao, B., Song, C., Lv, G., Li, B., Liu, X., Wang, K., & Liu, Y. (2014). Evaluation of the reduction in carbonyl emissions from a diesel engine using Fischer–Tropsch fuel synthesized from coal. Fuel, 133, 115-122. doi:10.1016/j.fuel.2014.05.025 | es_ES |
dc.description.references | Kook, S., & Pickett, L. M. (2012). Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions. Fuel, 93, 539-548. doi:10.1016/j.fuel.2011.10.004 | es_ES |
dc.description.references | Rimkus, A., Žaglinskis, J., Rapalis, P., & Skačkauskas, P. (2015). Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine. Energy Conversion and Management, 106, 1109-1117. doi:10.1016/j.enconman.2015.10.047 | es_ES |
dc.description.references | Schemme, S., Samsun, R. C., Peters, R., & Stolten, D. (2017). Power-to-fuel as a key to sustainable transport systems – An analysis of diesel fuels produced from CO 2 and renewable electricity. Fuel, 205, 198-221. doi:10.1016/j.fuel.2017.05.061 | es_ES |
dc.description.references | Lapuerta, M., Armas, O., Hernández, J. J., & Tsolakis, A. (2010). Potential for reducing emissions in a diesel engine by fuelling with conventional biodiesel and Fischer–Tropsch diesel. Fuel, 89(10), 3106-3113. doi:10.1016/j.fuel.2010.05.013 | es_ES |
dc.description.references | Gill, S. S., Tsolakis, A., Dearn, K. D., & Rodríguez-Fernández, J. (2011). Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science, 37(4), 503-523. doi:10.1016/j.pecs.2010.09.001 | es_ES |
dc.description.references | Jiao, Y., Liu, R., Zhang, Z., Yang, C., Zhou, G., Dong, S., & Liu, W. (2019). Comparison of combustion and emission characteristics of a diesel engine fueled with diesel and methanol-Fischer-Tropsch diesel-biodiesel-diesel blends at various altitudes. Fuel, 243, 52-59. doi:10.1016/j.fuel.2019.01.107 | es_ES |
dc.description.references | Abu-Jrai, A., Tsolakis, A., Theinnoi, K., Cracknell, R., Megaritis, A., Wyszynski, M. L., & Golunski, S. E. (2006). Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study. Energy & Fuels, 20(6), 2377-2384. doi:10.1021/ef060332a | es_ES |
dc.description.references | Schaberg, P., Botha, J., Schnell, M., Hermann, H.-O., Pelz, N., & Maly, R. (2005). Emissions Performance of GTL Diesel Fuel and Blends with Optimized Engine Calibrations. SAE Technical Paper Series. doi:10.4271/2005-01-2187 | es_ES |
dc.description.references | Iannuzzi, S. E., Barro, C., Boulouchos, K., & Burger, J. (2016). Combustion behavior and soot formation/oxidation of oxygenated fuels in a cylindrical constant volume chamber. Fuel, 167, 49-59. doi:10.1016/j.fuel.2015.11.060 | es_ES |
dc.description.references | Pellegrini, L., Marchionna, M., Patrini, R., Beatrice, C., Del Giacomo, N., & Guido, C. (2012). Combustion Behaviour and Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in a Light-Duty Diesel Engine. SAE Technical Paper Series. doi:10.4271/2012-01-1053 | es_ES |
dc.description.references | Zhu, R., Wang, X., Miao, H., Huang, Z., Gao, J., & Jiang, D. (2008). Performance and Emission Characteristics of Diesel Engines Fueled with Diesel−Dimethoxymethane (DMM) Blends. Energy & Fuels, 23(1), 286-293. doi:10.1021/ef8005228 | es_ES |
dc.description.references | Härtl, M., Seidenspinner, P., Jacob, E., & Wachtmeister, G. (2015). Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuelOME1. Fuel, 153, 328-335. doi:10.1016/j.fuel.2015.03.012 | es_ES |
dc.description.references | Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107 | es_ES |
dc.description.references | Ma, X., Ma, Y., Sun, S., Shuai, S.-J., Wang, Z., & Wang, J.-X. (2017). PLII-LEM and OH* Chemiluminescence Study on Soot Formation in Spray Combustion of PODEn-Diesel Blend Fuels in a Constant Volume Vessel. SAE Technical Paper Series. doi:10.4271/2017-01-2329 | es_ES |
dc.description.references | Liu, H., Wang, Z., Zhang, J., Wang, J., & Shuai, S. (2017). Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy, 185, 1393-1402. doi:10.1016/j.apenergy.2015.10.183 | es_ES |
dc.description.references | Lumpp, B., Rothe, D., Pastötter, C., Lämmermann, R., & Jacob, E. (2011). OXYMETHYLENE ETHERS AS DIESEL FUEL ADDITIVES OF THE FUTURE. MTZ worldwide, 72(3), 34-38. doi:10.1365/s38313-011-0027-z | es_ES |
dc.description.references | Liu, H., Wang, Z., Wang, J., & He, X. (2016). Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends. Energy, 97, 105-112. doi:10.1016/j.energy.2015.12.110 | es_ES |
dc.description.references | Chen, H., Su, X., Li, J., & Zhong, X. (2019). Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine. Energy, 171, 981-999. doi:10.1016/j.energy.2019.01.089 | es_ES |
dc.description.references | Payri, R., De La Morena, J., Monsalve-Serrano, J., Pesce, F. C., & Vassallo, A. (2018). Impact of counter-bore nozzle on the combustion process and exhaust emissions for light-duty diesel engine application. International Journal of Engine Research, 20(1), 46-57. doi:10.1177/1468087418819250 | es_ES |
dc.description.references | De Simio, L., & Iannaccone, S. (2019). Gaseous and particle emissions in low-temperature combustion diesel–HCNG dual-fuel operation with double pilot injection. Applied Energy, 253, 113602. doi:10.1016/j.apenergy.2019.113602 | es_ES |
dc.description.references | Denny, M., Holst, F., Helmantel, A., Persson, H., Tunestål, P., & Andersson, Ö. (2019). Impact of closely-coupled triple-pilot and conventional double-pilot injection strategies in a LD diesel engine. Fuel, 246, 141-148. doi:10.1016/j.fuel.2019.02.101 | es_ES |
dc.description.references | Pastor, J. V., García-Oliver, J. M., García, A., & Pinotti, M. (2016). Laser induced plasma methodology for ignition control in direct injection sprays. Energy Conversion and Management, 120, 144-156. doi:10.1016/j.enconman.2016.04.086 | es_ES |
dc.description.references | Jakob, M., Hülser, T., Janssen, A., Adomeit, P., Pischinger, S., & Grünefeld, G. (2012). Simultaneous high-speed visualization of soot luminosity and OH∗ chemiluminescence of alternative-fuel combustion in a HSDI diesel engine under realistic operating conditions. Combustion and Flame, 159(7), 2516-2529. doi:10.1016/j.combustflame.2012.03.004 | es_ES |
dc.description.references | Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Möller, S. (2016). Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combustion and Flame, 164, 212-223. doi:10.1016/j.combustflame.2015.11.018 | es_ES |
dc.description.references | Xuan, T., Pastor, J. V., García-Oliver, J. M., García, A., He, Z., Wang, Q., & Reyes, M. (2019). In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine. Applied Thermal Engineering, 149, 1-10. doi:10.1016/j.applthermaleng.2018.11.112 | es_ES |
dc.description.references | Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 | es_ES |
dc.description.references | Pastor, J., Olmeda, P., Martín, J., & Lewiski, F. (2018). Methodology for Optical Engine Characterization by Means of the Combination of Experimental and Modeling Techniques. Applied Sciences, 8(12), 2571. doi:10.3390/app8122571 | es_ES |