- -

An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pastor, José V. es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Mico Reche, Carlos es_ES
dc.contributor.author De Vargas Lewiski, Felipe es_ES
dc.date.accessioned 2021-05-20T03:32:34Z
dc.date.available 2021-05-20T03:32:34Z
dc.date.issued 2020-02-15 es_ES
dc.identifier.issn 0306-2619 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166515
dc.description.abstract [EN] Synthetic fuels (E-fuels) have shown to be an interesting alternative to replace the fossil diesel fuel due to its CO2 reduction potential as well as for their capability to diminish the soot production and therefore for improving the soot-NOX trade-off in Compression Ignition engines. Thus, the main objective of this paper was to better understand the combustion process and the in-cylinder soot formation of two of the most popular E-fuels currently: Fischer-Tropsch (FT) diesel and Oxymethylene dimethyl ether (OMEX). To achieve this aim, a single cylinder optical CI engine with a commercial piston geometry was used. Thee optical techniques (Natural Luminosity-NL, OH* chemiluminescence and 2-color pyrometry) were applied to analyze the combustion evolution and quantify the soot formation at different loads (1.5, 4.5 and 7.5 bar IMEP). OMEX presented the largest injection duration due to the low LHV. For the NL analysis, OMEX showed the lowest light intensity for the three loads tested, indicating a very low soot production. Despite of the low NL intensity, it presented the highest OH* chemiluminescence signal, indicating a higher presence of near-stoichiometric zones due to the high amount of oxygen. Regarding FT diesel, it showed a combustion behavior similar to the commercial diesel. NL, OH* and 2-color technique analysis indicated that for the three conditions tested, FT diesel presented lower soot production and a faster soot oxidation than commercial diesel. es_ES
dc.description.sponsorship This work was partially funded by Generalitat Valenciana through the Programa Santiago Grisolia (GRISOLIAP/2018/142) program. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject E-fuels es_ES
dc.subject Soot reduction es_ES
dc.subject OMEX es_ES
dc.subject FT diesel es_ES
dc.subject Oxygenated fuels es_ES
dc.subject Optical engines es_ES
dc.subject Optical Techniques es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apenergy.2019.114238 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F142/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Pastor, JV.; García Martínez, A.; Mico Reche, C.; De Vargas Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy. 260:1-12. https://doi.org/10.1016/j.apenergy.2019.114238 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apenergy.2019.114238 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 260 es_ES
dc.relation.pasarela S\398815 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 es_ES
dc.description.references Dronniou, N., Kashdan, J., Lecointe, B., Sauve, K., & Soleri, D. (2014). Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions. SAE International Journal of Engines, 7(2), 873-887. doi:10.4271/2014-01-1313 es_ES
dc.description.references Tanov, S., Wang, Z., Wang, H., Richter, M., & Johansson, B. (2015). Effects of Injection Strategies on Fluid Flow and Turbulence in Partially Premixed Combustion (PPC) in a Light Duty Engine. SAE Technical Paper Series. doi:10.4271/2015-24-2455 es_ES
dc.description.references Zha, K., Busch, S., Warey, A., Peterson, R. C., & Kurtz, E. (2018). A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry. SAE International Journal of Engines, 11(6), 783-804. doi:10.4271/2018-01-0230 es_ES
dc.description.references Omari, A., Heuser, B., Pischinger, S., & Rüdinger, C. (2019). Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines. Applied Energy, 239, 1242-1249. doi:10.1016/j.apenergy.2019.02.035 es_ES
dc.description.references Hao, B., Song, C., Lv, G., Li, B., Liu, X., Wang, K., & Liu, Y. (2014). Evaluation of the reduction in carbonyl emissions from a diesel engine using Fischer–Tropsch fuel synthesized from coal. Fuel, 133, 115-122. doi:10.1016/j.fuel.2014.05.025 es_ES
dc.description.references Kook, S., & Pickett, L. M. (2012). Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions. Fuel, 93, 539-548. doi:10.1016/j.fuel.2011.10.004 es_ES
dc.description.references Rimkus, A., Žaglinskis, J., Rapalis, P., & Skačkauskas, P. (2015). Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine. Energy Conversion and Management, 106, 1109-1117. doi:10.1016/j.enconman.2015.10.047 es_ES
dc.description.references Schemme, S., Samsun, R. C., Peters, R., & Stolten, D. (2017). Power-to-fuel as a key to sustainable transport systems – An analysis of diesel fuels produced from CO 2 and renewable electricity. Fuel, 205, 198-221. doi:10.1016/j.fuel.2017.05.061 es_ES
dc.description.references Lapuerta, M., Armas, O., Hernández, J. J., & Tsolakis, A. (2010). Potential for reducing emissions in a diesel engine by fuelling with conventional biodiesel and Fischer–Tropsch diesel. Fuel, 89(10), 3106-3113. doi:10.1016/j.fuel.2010.05.013 es_ES
dc.description.references Gill, S. S., Tsolakis, A., Dearn, K. D., & Rodríguez-Fernández, J. (2011). Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science, 37(4), 503-523. doi:10.1016/j.pecs.2010.09.001 es_ES
dc.description.references Jiao, Y., Liu, R., Zhang, Z., Yang, C., Zhou, G., Dong, S., & Liu, W. (2019). Comparison of combustion and emission characteristics of a diesel engine fueled with diesel and methanol-Fischer-Tropsch diesel-biodiesel-diesel blends at various altitudes. Fuel, 243, 52-59. doi:10.1016/j.fuel.2019.01.107 es_ES
dc.description.references Abu-Jrai, A., Tsolakis, A., Theinnoi, K., Cracknell, R., Megaritis, A., Wyszynski, M. L., & Golunski, S. E. (2006). Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study. Energy & Fuels, 20(6), 2377-2384. doi:10.1021/ef060332a es_ES
dc.description.references Schaberg, P., Botha, J., Schnell, M., Hermann, H.-O., Pelz, N., & Maly, R. (2005). Emissions Performance of GTL Diesel Fuel and Blends with Optimized Engine Calibrations. SAE Technical Paper Series. doi:10.4271/2005-01-2187 es_ES
dc.description.references Iannuzzi, S. E., Barro, C., Boulouchos, K., & Burger, J. (2016). Combustion behavior and soot formation/oxidation of oxygenated fuels in a cylindrical constant volume chamber. Fuel, 167, 49-59. doi:10.1016/j.fuel.2015.11.060 es_ES
dc.description.references Pellegrini, L., Marchionna, M., Patrini, R., Beatrice, C., Del Giacomo, N., & Guido, C. (2012). Combustion Behaviour and Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in a Light-Duty Diesel Engine. SAE Technical Paper Series. doi:10.4271/2012-01-1053 es_ES
dc.description.references Zhu, R., Wang, X., Miao, H., Huang, Z., Gao, J., & Jiang, D. (2008). Performance and Emission Characteristics of Diesel Engines Fueled with Diesel−Dimethoxymethane (DMM) Blends. Energy & Fuels, 23(1), 286-293. doi:10.1021/ef8005228 es_ES
dc.description.references Härtl, M., Seidenspinner, P., Jacob, E., & Wachtmeister, G. (2015). Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuelOME1. Fuel, 153, 328-335. doi:10.1016/j.fuel.2015.03.012 es_ES
dc.description.references Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107 es_ES
dc.description.references Ma, X., Ma, Y., Sun, S., Shuai, S.-J., Wang, Z., & Wang, J.-X. (2017). PLII-LEM and OH* Chemiluminescence Study on Soot Formation in Spray Combustion of PODEn-Diesel Blend Fuels in a Constant Volume Vessel. SAE Technical Paper Series. doi:10.4271/2017-01-2329 es_ES
dc.description.references Liu, H., Wang, Z., Zhang, J., Wang, J., & Shuai, S. (2017). Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy, 185, 1393-1402. doi:10.1016/j.apenergy.2015.10.183 es_ES
dc.description.references Lumpp, B., Rothe, D., Pastötter, C., Lämmermann, R., & Jacob, E. (2011). OXYMETHYLENE ETHERS AS DIESEL FUEL ADDITIVES OF THE FUTURE. MTZ worldwide, 72(3), 34-38. doi:10.1365/s38313-011-0027-z es_ES
dc.description.references Liu, H., Wang, Z., Wang, J., & He, X. (2016). Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends. Energy, 97, 105-112. doi:10.1016/j.energy.2015.12.110 es_ES
dc.description.references Chen, H., Su, X., Li, J., & Zhong, X. (2019). Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine. Energy, 171, 981-999. doi:10.1016/j.energy.2019.01.089 es_ES
dc.description.references Payri, R., De La Morena, J., Monsalve-Serrano, J., Pesce, F. C., & Vassallo, A. (2018). Impact of counter-bore nozzle on the combustion process and exhaust emissions for light-duty diesel engine application. International Journal of Engine Research, 20(1), 46-57. doi:10.1177/1468087418819250 es_ES
dc.description.references De Simio, L., & Iannaccone, S. (2019). Gaseous and particle emissions in low-temperature combustion diesel–HCNG dual-fuel operation with double pilot injection. Applied Energy, 253, 113602. doi:10.1016/j.apenergy.2019.113602 es_ES
dc.description.references Denny, M., Holst, F., Helmantel, A., Persson, H., Tunestål, P., & Andersson, Ö. (2019). Impact of closely-coupled triple-pilot and conventional double-pilot injection strategies in a LD diesel engine. Fuel, 246, 141-148. doi:10.1016/j.fuel.2019.02.101 es_ES
dc.description.references Pastor, J. V., García-Oliver, J. M., García, A., & Pinotti, M. (2016). Laser induced plasma methodology for ignition control in direct injection sprays. Energy Conversion and Management, 120, 144-156. doi:10.1016/j.enconman.2016.04.086 es_ES
dc.description.references Jakob, M., Hülser, T., Janssen, A., Adomeit, P., Pischinger, S., & Grünefeld, G. (2012). Simultaneous high-speed visualization of soot luminosity and OH∗ chemiluminescence of alternative-fuel combustion in a HSDI diesel engine under realistic operating conditions. Combustion and Flame, 159(7), 2516-2529. doi:10.1016/j.combustflame.2012.03.004 es_ES
dc.description.references Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Möller, S. (2016). Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combustion and Flame, 164, 212-223. doi:10.1016/j.combustflame.2015.11.018 es_ES
dc.description.references Xuan, T., Pastor, J. V., García-Oliver, J. M., García, A., He, Z., Wang, Q., & Reyes, M. (2019). In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine. Applied Thermal Engineering, 149, 1-10. doi:10.1016/j.applthermaleng.2018.11.112 es_ES
dc.description.references Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES
dc.description.references Pastor, J., Olmeda, P., Martín, J., & Lewiski, F. (2018). Methodology for Optical Engine Characterization by Means of the Combination of Experimental and Modeling Techniques. Applied Sciences, 8(12), 2571. doi:10.3390/app8122571 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem