Mostrar el registro sencillo del ítem
dc.contributor.author | Wang, Sujing | es_ES |
dc.contributor.author | Cabrero-Antonino, Maria | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | Cao, Chen-chen | es_ES |
dc.contributor.author | Tissot, Antoine | es_ES |
dc.contributor.author | Dovgaliuk, Iurii | es_ES |
dc.contributor.author | Marrot, Jerome | es_ES |
dc.contributor.author | Martineau-Corcos, Charlotte | es_ES |
dc.contributor.author | Yu, Liang | es_ES |
dc.contributor.author | Wang, Hao | es_ES |
dc.contributor.author | Shepard, William | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Serre, Christian | es_ES |
dc.date.accessioned | 2021-05-20T03:33:22Z | |
dc.date.available | 2021-05-20T03:33:22Z | |
dc.date.issued | 2020-12-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166524 | |
dc.description.abstract | [EN] Isophthalic acid (IPA) has been considered to build metal-organic frameworks (MOFs), owing to its facile availability, unique connection angle-mode, and a wide range of functional groups attached. Constructing titanium-IPA frameworks that possess photoresponse properties is an alluring characteristic with respect to the challenge of synthesizing new titanium-based MOFs (Ti-MOFs) Here, we report the first Ti-IPA MOF (MIP-208) that efficiently combines the use of preformed Ti-8 oxoclusters and in situ acetylation of the 5-NH2-IPA linker. The mixed solid-solution linkers strategy was successfully applied, resulting in a series of multivariate MIP-208 structures with tunable chemical environments and sizable porosity. MIP-208 shows the best result among the pure MOF catalysts for the photocatalytic methanation of carbon dioxide. To improve the photocatalytic performance, ruthenium oxide nanoparticles were photo-deposited on MIP-208, forming a highly active and selective composite catalyst, MIP-208@RuOx, which features a notable visible-light response coupled with excellent stability and recycling ability. | es_ES |
dc.description.sponsorship | S.W. acknowledges the support from the National Natural Science Foundation of China (22071234) and the Fundamental Research Funds for the Central Universities (WK2480000007). S.N. thanks the Ministerio de Ciencia, Innovacion y Universidades (RTI2018-099482-A-I00 project, the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), and Generalitat Valenciana grupos de investigacion consolidables (AICO/2019/214 project) and Agencia Valenciana de la Innovacion (INNEST/2020/111 project) for financial support. C.-C.C. acknowledges the support from the Program of China Scholarship Council (201700260093) and PHC Cai YuanPei Project (38893VJ). C.M.-C. is grateful for financial support from the Institut Universitaire de France (IUF) and the Paris Ile-de-France Region -DIM "Respore.'' H.G. thanks the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO2-1) and Generalitat Valenciana (Prometeo2017/083) for financial support. The authors thank the staff at Synchrotron SOLEIL and the associated scientists for beamtime and assistance during SCXRD data collections on PROXIMA 2A, as well as Dr. Peng Guo and Dr. Nana Yan from Dalian Institute of Chemical Physics (Chinese Academy of Sciences) for the collection of high-resolution PXRD data for Rietveld refinement. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier (Cell Press) | es_ES |
dc.relation.ispartof | Chem | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chempr.2020.10.017 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//22071234/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//WK2480000007/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSC//201700260093/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Ministère de l'Europe et des Affaires Étrangères//38893VJ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNEST%2F2020%2F111/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Wang, S.; Cabrero-Antonino, M.; Navalón Oltra, S.; Cao, C.; Tissot, A.; Dovgaliuk, I.; Marrot, J.... (2020). A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. Chem. 6(12):3409-3427. https://doi.org/10.1016/j.chempr.2020.10.017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.chempr.2020.10.017 | es_ES |
dc.description.upvformatpinicio | 3409 | es_ES |
dc.description.upvformatpfin | 3427 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2451-9294 | es_ES |
dc.relation.pasarela | S\430052 | es_ES |
dc.contributor.funder | Region Ile-de-France | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Institut Universitaire de France | es_ES |
dc.contributor.funder | Agència Valenciana de la Innovació | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Fundamental Research Funds for the Central Universities | es_ES |
dc.contributor.funder | Ministère de l'Europe et des Affaires Étrangères, Francia | es_ES |
dc.description.references | Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h | es_ES |
dc.description.references | Chen, L., & Xu, Q. (2019). Metal-Organic Framework Composites for Catalysis. Matter, 1(1), 57-89. doi:10.1016/j.matt.2019.05.018 | es_ES |
dc.description.references | Yeung, H. H.-M., Li, W., Saines, P. J., Köster, T. K. J., Grey, C. P., & Cheetham, A. K. (2013). Ligand-Directed Control over Crystal Structures of Inorganic-Organic Frameworks and Formation of Solid Solutions. Angewandte Chemie International Edition, 52(21), 5544-5547. doi:10.1002/anie.201300440 | es_ES |
dc.description.references | Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003j | es_ES |
dc.description.references | Desai, A. V., Sharma, S., Let, S., & Ghosh, S. K. (2019). N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 395, 146-192. doi:10.1016/j.ccr.2019.05.020 | es_ES |
dc.description.references | Zhang, H., Zou, R., & Zhao, Y. (2015). Macrocycle-based metal-organic frameworks. Coordination Chemistry Reviews, 292, 74-90. doi:10.1016/j.ccr.2015.02.012 | es_ES |
dc.description.references | He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041b | es_ES |
dc.description.references | Wang, H., Zhu, Q.-L., Zou, R., & Xu, Q. (2017). Metal-Organic Frameworks for Energy Applications. Chem, 2(1), 52-80. doi:10.1016/j.chempr.2016.12.002 | es_ES |
dc.description.references | Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019 | es_ES |
dc.description.references | Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h | es_ES |
dc.description.references | Silva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307e | es_ES |
dc.description.references | Ren, J., Dyosiba, X., Musyoka, N. M., Langmi, H. W., Mathe, M., & Liao, S. (2017). Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 352, 187-219. doi:10.1016/j.ccr.2017.09.005 | es_ES |
dc.description.references | Ohtani, M., Takase, K., Wang, P., Higashi, K., Ueno, K., Yasuda, N., … Kobiro, K. (2016). Water-triggered macroscopic structural transformation of a metal–organic framework. CrystEngComm, 18(11), 1866-1870. doi:10.1039/c6ce00031b | es_ES |
dc.description.references | Reinsch, H., De Vos, D., & Stock, N. (2013). Structure and Properties of [Al4(OH)8(o-C6H4(CO2)2)2]·H2O, a Layered Aluminum Phthalate. Zeitschrift für anorganische und allgemeine Chemie, 639(15), 2785-2789. doi:10.1002/zaac.201300357 | es_ES |
dc.description.references | Li, H., Davis, C. E., Groy, T. L., Kelley, D. G., & Yaghi, O. M. (1998). Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(9), 2186-2187. doi:10.1021/ja974172g | es_ES |
dc.description.references | Banerjee, D., & Parise, J. B. (2011). Recent Advances in s-Block Metal Carboxylate Networks. Crystal Growth & Design, 11(10), 4704-4720. doi:10.1021/cg2008304 | es_ES |
dc.description.references | Pagis, C., Ferbinteanu, M., Rothenberg, G., & Tanase, S. (2016). Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications. ACS Catalysis, 6(9), 6063-6072. doi:10.1021/acscatal.6b01935 | es_ES |
dc.description.references | Aguirre-Díaz, L. M., Reinares-Fisac, D., Iglesias, M., Gutiérrez-Puebla, E., Gándara, F., Snejko, N., & Monge, M. Á. (2017). Group 13th metal-organic frameworks and their role in heterogeneous catalysis. Coordination Chemistry Reviews, 335, 1-27. doi:10.1016/j.ccr.2016.12.003 | es_ES |
dc.description.references | Kang, M., Luo, D., Deng, Y., Li, R., & Lin, Z. (2014). Solvothermal synthesis and characterization of new calcium carboxylates based on cluster- and rod-like building blocks. Inorganic Chemistry Communications, 47, 52-55. doi:10.1016/j.inoche.2014.07.015 | es_ES |
dc.description.references | Bourne, S. A., Lu, J., Mondal, A., Moulton, B., & Zaworotko, M. J. (2001). Self-Assembly of Nanometer-Scale Secondary Building Units into an Undulating Two-Dimensional Network with Two Types of Hydrophobic Cavity. Angewandte Chemie International Edition, 40(11), 2111-2113. doi:10.1002/1521-3773(20010601)40:11<2111::aid-anie2111>3.0.co;2-f | es_ES |
dc.description.references | Vodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M., & Yaghi, O. M. (2001). Chemical Communications, (24), 2534-2535. doi:10.1039/b108684g | es_ES |
dc.description.references | Barthelet, K., Riou, D., & Férey, G. (2002). [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl, 9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, (14), 1492-1493. doi:10.1039/b202749f | es_ES |
dc.description.references | Qazvini, O. T., Babarao, R., Shi, Z.-L., Zhang, Y.-B., & Telfer, S. G. (2019). A Robust Ethane-Trapping Metal–Organic Framework with a High Capacity for Ethylene Purification. Journal of the American Chemical Society, 141(12), 5014-5020. doi:10.1021/jacs.9b00913 | es_ES |
dc.description.references | Kim, J.-Y., Norquist, A. J., & O’Hare, D. (2003). Incorporation of uranium(vi) into metal–organic framework solids, [UO2(C4H4O4)]·H2O, [UO2F(C5H6O4)]·2H2O, and [(UO2)1.5(C8H4O4)2]2[(CH3)2NCOH2]·H2O. Dalton Trans., (14), 2813-2814. doi:10.1039/b306733p | es_ES |
dc.description.references | Wang, G., Song, T., Fan, Y., Xu, J., Wang, M., Zhang, H., … Wang, L. (2010). [Y2(H2O)(BDC)3(DMF)]·(DMF)3: A rare 2-D (42.6)(45.6)2(48.62)(49.65.8) net with multi-helical-array and opened windows. Inorganic Chemistry Communications, 13(4), 502-505. doi:10.1016/j.inoche.2010.01.021 | es_ES |
dc.description.references | Mihalcea, I., Henry, N., Clavier, N., Dacheux, N., & Loiseau, T. (2011). Occurence of an Octanuclear Motif of Uranyl Isophthalate with Cation–Cation Interactions through Edge-Sharing Connection Mode. Inorganic Chemistry, 50(13), 6243-6249. doi:10.1021/ic2005584 | es_ES |
dc.description.references | Vougo-Zanda, M., Wang, X., & Jacobson, A. J. (2007). Influence of Ligand Geometry on the Formation of In−O Chains in Metal-Oxide Organic Frameworks (MOOFs). Inorganic Chemistry, 46(21), 8819-8824. doi:10.1021/ic701126t | es_ES |
dc.description.references | Bu, F., & Xiao, S.-J. (2010). A 4-connected anionic metal–organic nanotube constructed from indium isophthalate. CrystEngComm, 12(11), 3385. doi:10.1039/c001284j | es_ES |
dc.description.references | Panda, T., Kundu, T., & Banerjee, R. (2013). Structural isomerism leading to variable proton conductivity in indium(iii) isophthalic acid based frameworks. Chemical Communications, 49(55), 6197. doi:10.1039/c3cc41939h | es_ES |
dc.description.references | Chen, P.-K., Che, Y.-X., Zheng, J.-M., & Batten, S. R. (2007). Heteropolynuclear Metamagnet Showing Spin Canting and Single-Crystal to Single-Crystal Phase Transformation. Chemistry of Materials, 19(9), 2162-2167. doi:10.1021/cm062801s | es_ES |
dc.description.references | Zhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J., & Yao, Y.-G. (2008). Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metal−Organic Framework Materials Based on Zinc/Lead Isophthalates. Inorganic Chemistry, 47(18), 8286-8293. doi:10.1021/ic800871r | es_ES |
dc.description.references | Zhang, J.-P., Ghosh, S. K., Lin, J.-B., & Kitagawa, S. (2009). New Heterometallic Carboxylate Frameworks: Synthesis, Structure, Robustness, Flexibility, and Porosity. Inorganic Chemistry, 48(16), 7970-7976. doi:10.1021/ic900919w | es_ES |
dc.description.references | McCormick, L. J., Morris, S. A., Slawin, A. M. Z., Teat, S. J., & Morris, R. E. (2016). Coordination Polymers of 5-Alkoxy Isophthalic Acids. Crystal Growth & Design, 16(10), 5771-5780. doi:10.1021/acs.cgd.6b00853 | es_ES |
dc.description.references | Chen, J., Li, C.-P., & Du, M. (2011). Substituent effect of R-isophthalates (R = –H, –CH3, –OCH3, –tBu, –OH, and –NO2) on the construction of CdIIcoordination polymers incorporating a dipyridyl tecton 2,5-bis(3-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 13(6), 1885-1893. doi:10.1039/c0ce00555j | es_ES |
dc.description.references | Du, M., Zhang, Z.-H., You, Y.-P., & Zhao, X.-J. (2008). R-Isophthalate (R = –H, –NO2, and –COOH) as modular building blocks for mixed-ligand coordination polymers incorporated with a versatile connector 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole. CrystEngComm, 10(3), 306-321. doi:10.1039/b711447h | es_ES |
dc.description.references | Chen, L., Ye, J.-W., Wang, H.-P., Pan, M., Yin, S.-Y., Wei, Z.-W., … Su, C.-Y. (2017). Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nature Communications, 8(1). doi:10.1038/ncomms15985 | es_ES |
dc.description.references | Yuan, S., Qin, J.-S., Lollar, C. T., & Zhou, H.-C. (2018). Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 4(4), 440-450. doi:10.1021/acscentsci.8b00073 | es_ES |
dc.description.references | Rieth, A. J., Wright, A. M., & Dincă, M. (2019). Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 4(11), 708-725. doi:10.1038/s41578-019-0140-1 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581 | es_ES |
dc.description.references | Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003 | es_ES |
dc.description.references | Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun., 49(90), 10575-10577. doi:10.1039/c3cc46398b | es_ES |
dc.description.references | Zhu, J., Li, P.-Z., Guo, W., Zhao, Y., & Zou, R. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 359, 80-101. doi:10.1016/j.ccr.2017.12.013 | es_ES |
dc.description.references | Benoit, V., Pillai, R. S., Orsi, A., Normand, P., Jobic, H., Nouar, F., … Llewellyn, P. L. (2016). MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport. Journal of Materials Chemistry A, 4(4), 1383-1389. doi:10.1039/c5ta09349j | es_ES |
dc.description.references | Sun, Y., Liu, Y., Caro, J., Guo, X., Song, C., & Liu, Y. (2018). In‐Plane Epitaxial Growth of Highly c ‐Oriented NH 2 ‐MIL‐125(Ti) Membranes with Superior H 2 /CO 2 Selectivity. Angewandte Chemie International Edition, 57(49), 16088-16093. doi:10.1002/anie.201810088 | es_ES |
dc.description.references | Wahiduzzaman, M., Wang, S., Schnee, J., Vimont, A., Ortiz, V., Yot, P. G., … Devautour-Vinot, S. (2019). A High Proton Conductive Hydrogen-Sulfate Decorated Titanium Carboxylate Metal−Organic Framework. ACS Sustainable Chemistry & Engineering, 7(6), 5776-5783. doi:10.1021/acssuschemeng.8b05306 | es_ES |
dc.description.references | Pinto, R. V., Wang, S., Tavares, S. R., Pires, J., Antunes, F., Vimont, A., … Pinto, M. L. (2020). Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF. Angewandte Chemie International Edition, 59(13), 5135-5143. doi:10.1002/anie.201913135 | es_ES |
dc.description.references | Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001d | es_ES |
dc.description.references | Tachikawa, T., Tojo, S., Fujitsuka, M., Sekino, T., & Majima, T. (2006). Photoinduced Charge Separation in Titania Nanotubes. The Journal of Physical Chemistry B, 110(29), 14055-14059. doi:10.1021/jp063800q | es_ES |
dc.description.references | Wang, S., Kitao, T., Guillou, N., Wahiduzzaman, M., Martineau-Corcos, C., Nouar, F., … Serre, C. (2018). A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 9(1). doi:10.1038/s41467-018-04034-w | es_ES |
dc.description.references | Serre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., … Férey, G. (2006). Synthesis, Structure and Properties of Related Microporous N,N‘-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chemistry of Materials, 18(6), 1451-1457. doi:10.1021/cm052149l | es_ES |
dc.description.references | Li, C., Xu, H., Gao, J., Du, W., Shangguan, L., Zhang, X., … Chen, B. (2019). Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H2 evolution. Journal of Materials Chemistry A, 7(19), 11928-11933. doi:10.1039/c9ta01942a | es_ES |
dc.description.references | Keum, Y., Park, S., Chen, Y.-P., & Park, J. (2018). Titanium-Carboxylate Metal-Organic Framework Based on an Unprecedented Ti-Oxo Chain Cluster. Angewandte Chemie International Edition, 57(45), 14852-14856. doi:10.1002/anie.201809762 | es_ES |
dc.description.references | Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916b | es_ES |
dc.description.references | Padial, N. M., Castells-Gil, J., Almora-Barrios, N., Romero-Angel, M., da Silva, I., Barawi, M., … Martí-Gastaldo, C. (2019). Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity. Journal of the American Chemical Society, 141(33), 13124-13133. doi:10.1021/jacs.9b04915 | es_ES |
dc.description.references | Wang, S., Reinsch, H., Heymans, N., Wahiduzzaman, M., Martineau-Corcos, C., De Weireld, G., … Serre, C. (2020). Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2(2), 440-450. doi:10.1016/j.matt.2019.11.002 | es_ES |
dc.description.references | Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350u | es_ES |
dc.description.references | Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357 | es_ES |
dc.description.references | Duran, D., Couster, S. L., Desjardins, K., Delmotte, A., Fox, G., Meijers, R., … Shepard, W. (2013). PROXIMA 2A – A New Fully Tunable Micro-focus Beamline for Macromolecular Crystallography. Journal of Physics: Conference Series, 425(1), 012005. doi:10.1088/1742-6596/425/1/012005 | es_ES |
dc.description.references | Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., & Stock, N. (2012). Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 25(1), 17-26. doi:10.1021/cm3025445 | es_ES |
dc.description.references | Férey, G., & Serre, C. (2009). Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 38(5), 1380. doi:10.1039/b804302g | es_ES |
dc.description.references | Férey, G. (2016). Giant flexibility of crystallized organic–inorganic porous solids: facts, reasons, effects and applications. New Journal of Chemistry, 40(5), 3950-3967. doi:10.1039/c5nj02747k | es_ES |
dc.description.references | Leshuk, T., Parviz, R., Everett, P., Krishnakumar, H., Varin, R. A., & Gu, F. (2013). Photocatalytic Activity of Hydrogenated TiO2. ACS Applied Materials & Interfaces, 5(6), 1892-1895. doi:10.1021/am302903n | es_ES |
dc.description.references | Chen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7), 1861-1885. doi:10.1039/c4cs00330f | es_ES |
dc.description.references | Liu, L., & Chen, X. (2014). Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 114(19), 9890-9918. doi:10.1021/cr400624r | es_ES |
dc.description.references | Reinsch, H., Waitschat, S., & Stock, N. (2013). Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 42(14), 4840. doi:10.1039/c3dt32355b | es_ES |
dc.description.references | Deng, H., Doonan, C. J., Furukawa, H., Ferreira, R. B., Towne, J., Knobler, C. B., … Yaghi, O. M. (2010). Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science, 327(5967), 846-850. doi:10.1126/science.1181761 | es_ES |
dc.description.references | Foo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136z | es_ES |
dc.description.references | Helal, A., Yamani, Z. H., Cordova, K. E., & Yaghi, O. M. (2017). Multivariate metal-organic frameworks. National Science Review, 4(3), 296-298. doi:10.1093/nsr/nwx013 | es_ES |
dc.description.references | Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829a | es_ES |
dc.description.references | Li, R., Hu, J., Deng, M., Wang, H., Wang, X., Hu, Y., … Xiong, Y. (2014). Integration of an Inorganic Semiconductor with a Metal-Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials, 26(28), 4783-4788. doi:10.1002/adma.201400428 | es_ES |
dc.description.references | Cabrero-Antonino, M., Remiro-Buenamañana, S., Souto, M., García-Valdivia, A. A., Choquesillo-Lazarte, D., Navalón, S., … García, H. (2019). Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2methanation. Chemical Communications, 55(73), 10932-10935. doi:10.1039/c9cc04446a | es_ES |
dc.description.references | Ulmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2 | es_ES |
dc.description.references | Younas, M., Loong Kong, L., Bashir, M. J. K., Nadeem, H., Shehzad, A., & Sethupathi, S. (2016). Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy & Fuels, 30(11), 8815-8831. doi:10.1021/acs.energyfuels.6b01723 | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2019). Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 3(8), 1949-1962. doi:10.1016/j.joule.2019.06.001 | es_ES |
dc.description.references | Wenderich, K., & Mul, G. (2016). Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 116(23), 14587-14619. doi:10.1021/acs.chemrev.6b00327 | es_ES |
dc.description.references | Giang, T. P. L., Tran, T. N. M., & Le, X. T. (2012). Preparation and characterization of titanium dioxide nanotube array supported hydrated ruthenium oxide catalysts. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1), 015008. doi:10.1088/2043-6262/3/1/015008 | es_ES |
dc.description.references | Morgan, D. J. (2015). Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 47(11), 1072-1079. doi:10.1002/sia.5852 | es_ES |
dc.description.references | Albero, J., Peng, Y., & García, H. (2020). Photocatalytic CO2 Reduction to C2+ Products. ACS Catalysis, 10(10), 5734-5749. doi:10.1021/acscatal.0c00478 | es_ES |
dc.description.references | Mateo, D., Santiago‐Portillo, A., Albero, J., Navalón, S., Alvaro, M., & García, H. (2019). Long‐Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie International Edition, 58(49), 17843-17848. doi:10.1002/anie.201911600 | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071 | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287e | es_ES |
dc.description.references | Mateo, D., Asiri, A. M., Albero, J., & García, H. (2018). The mechanism of photocatalytic CO2 reduction by graphene-supported Cu2O probed by sacrificial electron donors. Photochemical & Photobiological Sciences, 17(6), 829-834. doi:10.1039/c7pp00442g | es_ES |
dc.description.references | Karthik, R. (2016). Electrochemical Study of Nitrobenzene Reduction Using Potentiostatic Preparation of nephrolepis Leaf Like Silver Microstructure. International Journal of Electrochemical Science, 6164-6172. doi:10.20964/2016.07.63 | es_ES |
dc.description.references | Li, X., Yu, J., Jaroniec, M., & Chen, X. (2019). Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews, 119(6), 3962-4179. doi:10.1021/acs.chemrev.8b00400 | es_ES |