Mostrar el registro sencillo del ítem
dc.contributor.author | Sepúlveda, M. Magdalena | es_ES |
dc.contributor.author | Rojas, Gonzalo M. | es_ES |
dc.contributor.author | Faure, Evelyng | es_ES |
dc.contributor.author | Pardo, Claudio R. | es_ES |
dc.contributor.author | las Heras, Facundo | es_ES |
dc.contributor.author | Okuma, Cecilia | es_ES |
dc.contributor.author | Cordovez, Jorge | es_ES |
dc.contributor.author | de la Iglesia-Vayá, María | es_ES |
dc.contributor.author | Molina Mateo, José | es_ES |
dc.contributor.author | Gálvez, Marcelo | es_ES |
dc.date.accessioned | 2021-05-20T03:33:40Z | |
dc.date.available | 2021-05-20T03:33:40Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 1525-5050 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166529 | |
dc.description.abstract | [EN] Focal cortical dysplasias (FCDs) are a frequent cause of epilepsy. It has been reported that up to 40% of them cannot be visualized with conventional magnetic resonance imaging (MRI). The main objective of this work was to evaluate by means of a retrospective descriptive observational study whether the automated brain segmentation is useful for detecting FCD. One hundred and fifty-five patients, who underwent surgery between the years 2009 and 2016, were reviewed. Twenty patients with FCD confirmed by histology and a preoperative segmentation study, with ages ranging from 3 to 43 years (14 men), were analyzed. Three expert neuroradiologists visually analyzed conventional and advancedMRI with automated segmentation. They were classified into positive and negative concerning visualization of FCD by consensus. Of the 20 patients evaluated with conventional MRI, 12 were positive for FCD.Of the negative studies for FCD with conventional MRI, 2 (25%) were positive when they were analyzed with automated segmentation. In 13 of the 20 patients (with positive segmentation for FCD), cortical thickening was observed in 5 (38.5%), while pseudo thickening was observed in the rest of patients (8, 61.5%) in the anatomical region of the brain corresponding to the dysplasia. This work demonstrated that automated brain segmentation helps to increase detection of FCDs that are unable to be visualized in conventional MRI images. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Epilepsy & Behavior | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Brain segmentation | es_ES |
dc.subject | FreeSurfer | es_ES |
dc.subject | Focal cortical dysplasia | es_ES |
dc.subject | FCD | es_ES |
dc.subject | Epilepsy | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Visual analysis of automated segmentation in the diagnosis of focal cortical dysplasias with magnetic resonance imaging | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.yebeh.2019.106684 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Sepúlveda, MM.; Rojas, GM.; Faure, E.; Pardo, CR.; Las Heras, F.; Okuma, C.; Cordovez, J.... (2020). Visual analysis of automated segmentation in the diagnosis of focal cortical dysplasias with magnetic resonance imaging. Epilepsy & Behavior. 102:1-10. https://doi.org/10.1016/j.yebeh.2019.106684 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.yebeh.2019.106684 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 102 | es_ES |
dc.identifier.pmid | 31778880 | es_ES |
dc.relation.pasarela | S\397893 | es_ES |
dc.description.references | Fisher, R. S., Boas, W. van E., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J. (2005). Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470-472. doi:10.1111/j.0013-9580.2005.66104.x | es_ES |
dc.description.references | Banerjee, P. N., Filippi, D., & Allen Hauser, W. (2009). The descriptive epidemiology of epilepsy—A review. Epilepsy Research, 85(1), 31-45. doi:10.1016/j.eplepsyres.2009.03.003 | es_ES |
dc.description.references | Ngugi, A. K., Kariuki, S. M., Bottomley, C., Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2011). Incidence of epilepsy: A systematic review and meta-analysis. Neurology, 77(10), 1005-1012. doi:10.1212/wnl.0b013e31822cfc90 | es_ES |
dc.description.references | Kwan, P., & Brodie, M. J. (2000). Early Identification of Refractory Epilepsy. New England Journal of Medicine, 342(5), 314-319. doi:10.1056/nejm200002033420503 | es_ES |
dc.description.references | Laxer, K. D., Trinka, E., Hirsch, L. J., Cendes, F., Langfitt, J., Delanty, N., … Benbadis, S. R. (2014). The consequences of refractory epilepsy and its treatment. Epilepsy & Behavior, 37, 59-70. doi:10.1016/j.yebeh.2014.05.031 | es_ES |
dc.description.references | Marcelo, G. M., Gonzalo, R. C., Jorge, C. M., Jaime, C. E., & Takeshi, A. K. (2013). Estrategias para mejorar la visualización de lesiones en pacientes con epilepsia refractaria. Revista Médica Clínica Las Condes, 24(6), 958-972. doi:10.1016/s0716-8640(13)70250-5 | es_ES |
dc.description.references | Blümcke, I., Thom, M., Aronica, E., Armstrong, D. D., Vinters, H. V., Palmini, A., … Spreafico, R. (2010). The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission1. Epilepsia, 52(1), 158-174. doi:10.1111/j.1528-1167.2010.02777.x | es_ES |
dc.description.references | Bast, T., Ramantani, G., Seitz, A., & Rating, D. (2006). Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurologica Scandinavica, 113(2), 72-81. doi:10.1111/j.1600-0404.2005.00555.x | es_ES |
dc.description.references | Tassi, L. (2002). Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain, 125(8), 1719-1732. doi:10.1093/brain/awf175 | es_ES |
dc.description.references | Lerner, J. T., Salamon, N., Hauptman, J. S., Velasco, T. R., Hemb, M., Wu, J. Y., … Mathern, G. W. (2009). Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: A critical review and the UCLA experience. Epilepsia, 50(6), 1310-1335. doi:10.1111/j.1528-1167.2008.01998.x | es_ES |
dc.description.references | Kabat, J., & Król, P. (2012). Ogniskowa dysplazja korowa – stan obecny wiedzy. Polish Journal of Radiology, 77(2), 35-43. doi:10.12659/pjr.882968 | es_ES |
dc.description.references | Tatum, W. O., Benbadis, S. R., Hussain, A., Al-Saadi, S., Kaminski, B., Heriaud, L. S., & Vale, F. L. (2008). Ictal EEG remains the prominent predictor of seizure-free outcome after temporal lobectomy in epileptic patients with normal brain MRI. Seizure, 17(7), 631-636. doi:10.1016/j.seizure.2008.04.001 | es_ES |
dc.description.references | Raff, U., Vargas, P. F., Rojas, G. M., Scherzinger, A. L., & Simon, J. H. (1997). Quantitation of T2 lesion load in multiple sclerosis with magnetic resonance imaging: A pilot study of a probabilistic neural network approach. Academic Radiology, 4(6), 431-437. doi:10.1016/s1076-6332(97)80051-7 | es_ES |
dc.description.references | Raff, U., Rojas, G. M., Hutchinson, M., & Simon, J. H. (2000). Quantitation of T2 lesion load in patients with multiple sclerosis: A novel semiautomated segmentation technique. Academic Radiology, 7(4), 237-247. doi:10.1016/s1076-6332(00)80473-0 | es_ES |
dc.description.references | Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782-790. doi:10.1016/j.neuroimage.2011.09.015 | es_ES |
dc.description.references | Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774-781. doi:10.1016/j.neuroimage.2012.01.021 | es_ES |
dc.description.references | Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical Surface-Based Analysis. NeuroImage, 9(2), 179-194. doi:10.1006/nimg.1998.0395 | es_ES |
dc.description.references | Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. (2002). Whole Brain Segmentation. Neuron, 33(3), 341-355. doi:10.1016/s0896-6273(02)00569-x | es_ES |
dc.description.references | Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical Surface-Based Analysis. NeuroImage, 9(2), 195-207. doi:10.1006/nimg.1998.0396 | es_ES |
dc.description.references | De Macedo Rodrigues, K., Ben-Avi, E., Sliva, D. D., Choe, M., Drottar, M., Wang, R., … Zöllei, L. (2015). A FreeSurfer-compliant consistent manual segmentation of infant brains spanning the 0–2 year age range. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00021 | es_ES |
dc.description.references | Devi, C. N., Chandrasekharan, A., V.K., S., & Alex, Z. C. (2017). Automatic segmentation of infant brain MR images: With special reference to myelinated white matter. Biocybernetics and Biomedical Engineering, 37(1), 143-158. doi:10.1016/j.bbe.2016.11.004 | es_ES |
dc.description.references | Fisher, R. A. (1922). On the Interpretation of χ 2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical Society, 85(1), 87. doi:10.2307/2340521 | es_ES |
dc.description.references | Engel, J. (2006). Report of the ILAE Classification Core Group. Epilepsia, 47(9), 1558-1568. doi:10.1111/j.1528-1167.2006.00215.x | es_ES |
dc.description.references | McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: a survey. Medical Image Analysis, 1(2), 91-108. doi:10.1016/s1361-8415(96)80007-7 | es_ES |
dc.description.references | Xiaolan Zeng, Staib, L. H., Schultz, R. T., & Duncan, J. S. (1999). Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation. IEEE Transactions on Medical Imaging, 18(10), 927-937. doi:10.1109/42.811276 | es_ES |
dc.description.references | MacDonald, D., Kabani, N., Avis, D., & Evans, A. C. (2000). Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI. NeuroImage, 12(3), 340-356. doi:10.1006/nimg.1999.0534 | es_ES |
dc.description.references | Colliot, O., Bernasconi, N., Khalili, N., Antel, S. B., Naessens, V., & Bernasconi, A. (2006). Individual voxel-based analysis of gray matter in focal cortical dysplasia. NeuroImage, 29(1), 162-171. doi:10.1016/j.neuroimage.2005.07.021 | es_ES |
dc.description.references | Wilke, M., Kassubek, J., Ziyeh, S., Schulze-Bonhage, A., & Huppertz, H. . (2003). Automated detection of gray matter malformations using optimized voxel-based morphometry: a systematic approach. NeuroImage, 20(1), 330-343. doi:10.1016/s1053-8119(03)00296-9 | es_ES |
dc.description.references | Krsek, P., Maton, B., Korman, B., Pacheco-Jacome, E., Jayakar, P., Dunoyer, C., … Duchowny, M. (2008). Different features of histopathological subtypes of pediatric focal cortical dysplasia. Annals of Neurology, 63(6), 758-769. doi:10.1002/ana.21398 | es_ES |
dc.description.references | Kini, L. G., Gee, J. C., & Litt, B. (2016). Computational analysis in epilepsy neuroimaging: A survey of features and methods. NeuroImage: Clinical, 11, 515-529. doi:10.1016/j.nicl.2016.02.013 | es_ES |
dc.description.references | Halac, G., Delil, S., Zafer, D., Isler, C., Uzan, M., Comunoglu, N., … Ozkara, C. (2017). Compatibility of MRI and FDG-PET findings with histopathological results in patients with focal cortical dysplasia. Seizure, 45, 80-86. doi:10.1016/j.seizure.2016.11.024 | es_ES |
dc.description.references | Huppertz, H.-J., Grimm, C., Fauser, S., Kassubek, J., Mader, I., Hochmuth, A., … Schulze-Bonhage, A. (2005). Enhanced visualization of blurred gray–white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Research, 67(1-2), 35-50. doi:10.1016/j.eplepsyres.2005.07.009 | es_ES |