- -

Visual analysis of automated segmentation in the diagnosis of focal cortical dysplasias with magnetic resonance imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Visual analysis of automated segmentation in the diagnosis of focal cortical dysplasias with magnetic resonance imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sepúlveda, M. Magdalena es_ES
dc.contributor.author Rojas, Gonzalo M. es_ES
dc.contributor.author Faure, Evelyng es_ES
dc.contributor.author Pardo, Claudio R. es_ES
dc.contributor.author las Heras, Facundo es_ES
dc.contributor.author Okuma, Cecilia es_ES
dc.contributor.author Cordovez, Jorge es_ES
dc.contributor.author de la Iglesia-Vayá, María es_ES
dc.contributor.author Molina Mateo, José es_ES
dc.contributor.author Gálvez, Marcelo es_ES
dc.date.accessioned 2021-05-20T03:33:40Z
dc.date.available 2021-05-20T03:33:40Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 1525-5050 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166529
dc.description.abstract [EN] Focal cortical dysplasias (FCDs) are a frequent cause of epilepsy. It has been reported that up to 40% of them cannot be visualized with conventional magnetic resonance imaging (MRI). The main objective of this work was to evaluate by means of a retrospective descriptive observational study whether the automated brain segmentation is useful for detecting FCD. One hundred and fifty-five patients, who underwent surgery between the years 2009 and 2016, were reviewed. Twenty patients with FCD confirmed by histology and a preoperative segmentation study, with ages ranging from 3 to 43 years (14 men), were analyzed. Three expert neuroradiologists visually analyzed conventional and advancedMRI with automated segmentation. They were classified into positive and negative concerning visualization of FCD by consensus. Of the 20 patients evaluated with conventional MRI, 12 were positive for FCD.Of the negative studies for FCD with conventional MRI, 2 (25%) were positive when they were analyzed with automated segmentation. In 13 of the 20 patients (with positive segmentation for FCD), cortical thickening was observed in 5 (38.5%), while pseudo thickening was observed in the rest of patients (8, 61.5%) in the anatomical region of the brain corresponding to the dysplasia. This work demonstrated that automated brain segmentation helps to increase detection of FCDs that are unable to be visualized in conventional MRI images. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Epilepsy & Behavior es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Brain segmentation es_ES
dc.subject FreeSurfer es_ES
dc.subject Focal cortical dysplasia es_ES
dc.subject FCD es_ES
dc.subject Epilepsy es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Visual analysis of automated segmentation in the diagnosis of focal cortical dysplasias with magnetic resonance imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.yebeh.2019.106684 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Sepúlveda, MM.; Rojas, GM.; Faure, E.; Pardo, CR.; Las Heras, F.; Okuma, C.; Cordovez, J.... (2020). Visual analysis of automated segmentation in the diagnosis of focal cortical dysplasias with magnetic resonance imaging. Epilepsy & Behavior. 102:1-10. https://doi.org/10.1016/j.yebeh.2019.106684 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.yebeh.2019.106684 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 102 es_ES
dc.identifier.pmid 31778880 es_ES
dc.relation.pasarela S\397893 es_ES
dc.description.references Fisher, R. S., Boas, W. van E., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J. (2005). Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470-472. doi:10.1111/j.0013-9580.2005.66104.x es_ES
dc.description.references Banerjee, P. N., Filippi, D., & Allen Hauser, W. (2009). The descriptive epidemiology of epilepsy—A review. Epilepsy Research, 85(1), 31-45. doi:10.1016/j.eplepsyres.2009.03.003 es_ES
dc.description.references Ngugi, A. K., Kariuki, S. M., Bottomley, C., Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2011). Incidence of epilepsy: A systematic review and meta-analysis. Neurology, 77(10), 1005-1012. doi:10.1212/wnl.0b013e31822cfc90 es_ES
dc.description.references Kwan, P., & Brodie, M. J. (2000). Early Identification of Refractory Epilepsy. New England Journal of Medicine, 342(5), 314-319. doi:10.1056/nejm200002033420503 es_ES
dc.description.references Laxer, K. D., Trinka, E., Hirsch, L. J., Cendes, F., Langfitt, J., Delanty, N., … Benbadis, S. R. (2014). The consequences of refractory epilepsy and its treatment. Epilepsy & Behavior, 37, 59-70. doi:10.1016/j.yebeh.2014.05.031 es_ES
dc.description.references Marcelo, G. M., Gonzalo, R. C., Jorge, C. M., Jaime, C. E., & Takeshi, A. K. (2013). Estrategias para mejorar la visualización de lesiones en pacientes con epilepsia refractaria. Revista Médica Clínica Las Condes, 24(6), 958-972. doi:10.1016/s0716-8640(13)70250-5 es_ES
dc.description.references Blümcke, I., Thom, M., Aronica, E., Armstrong, D. D., Vinters, H. V., Palmini, A., … Spreafico, R. (2010). The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission1. Epilepsia, 52(1), 158-174. doi:10.1111/j.1528-1167.2010.02777.x es_ES
dc.description.references Bast, T., Ramantani, G., Seitz, A., & Rating, D. (2006). Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurologica Scandinavica, 113(2), 72-81. doi:10.1111/j.1600-0404.2005.00555.x es_ES
dc.description.references Tassi, L. (2002). Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain, 125(8), 1719-1732. doi:10.1093/brain/awf175 es_ES
dc.description.references Lerner, J. T., Salamon, N., Hauptman, J. S., Velasco, T. R., Hemb, M., Wu, J. Y., … Mathern, G. W. (2009). Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: A critical review and the UCLA experience. Epilepsia, 50(6), 1310-1335. doi:10.1111/j.1528-1167.2008.01998.x es_ES
dc.description.references Kabat, J., & Król, P. (2012). Ogniskowa dysplazja korowa – stan obecny wiedzy. Polish Journal of Radiology, 77(2), 35-43. doi:10.12659/pjr.882968 es_ES
dc.description.references Tatum, W. O., Benbadis, S. R., Hussain, A., Al-Saadi, S., Kaminski, B., Heriaud, L. S., & Vale, F. L. (2008). Ictal EEG remains the prominent predictor of seizure-free outcome after temporal lobectomy in epileptic patients with normal brain MRI. Seizure, 17(7), 631-636. doi:10.1016/j.seizure.2008.04.001 es_ES
dc.description.references Raff, U., Vargas, P. F., Rojas, G. M., Scherzinger, A. L., & Simon, J. H. (1997). Quantitation of T2 lesion load in multiple sclerosis with magnetic resonance imaging: A pilot study of a probabilistic neural network approach. Academic Radiology, 4(6), 431-437. doi:10.1016/s1076-6332(97)80051-7 es_ES
dc.description.references Raff, U., Rojas, G. M., Hutchinson, M., & Simon, J. H. (2000). Quantitation of T2 lesion load in patients with multiple sclerosis: A novel semiautomated segmentation technique. Academic Radiology, 7(4), 237-247. doi:10.1016/s1076-6332(00)80473-0 es_ES
dc.description.references Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782-790. doi:10.1016/j.neuroimage.2011.09.015 es_ES
dc.description.references Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774-781. doi:10.1016/j.neuroimage.2012.01.021 es_ES
dc.description.references Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical Surface-Based Analysis. NeuroImage, 9(2), 179-194. doi:10.1006/nimg.1998.0395 es_ES
dc.description.references Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. (2002). Whole Brain Segmentation. Neuron, 33(3), 341-355. doi:10.1016/s0896-6273(02)00569-x es_ES
dc.description.references Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical Surface-Based Analysis. NeuroImage, 9(2), 195-207. doi:10.1006/nimg.1998.0396 es_ES
dc.description.references De Macedo Rodrigues, K., Ben-Avi, E., Sliva, D. D., Choe, M., Drottar, M., Wang, R., … Zöllei, L. (2015). A FreeSurfer-compliant consistent manual segmentation of infant brains spanning the 0–2 year age range. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00021 es_ES
dc.description.references Devi, C. N., Chandrasekharan, A., V.K., S., & Alex, Z. C. (2017). Automatic segmentation of infant brain MR images: With special reference to myelinated white matter. Biocybernetics and Biomedical Engineering, 37(1), 143-158. doi:10.1016/j.bbe.2016.11.004 es_ES
dc.description.references Fisher, R. A. (1922). On the Interpretation of χ 2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical Society, 85(1), 87. doi:10.2307/2340521 es_ES
dc.description.references Engel, J. (2006). Report of the ILAE Classification Core Group. Epilepsia, 47(9), 1558-1568. doi:10.1111/j.1528-1167.2006.00215.x es_ES
dc.description.references McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: a survey. Medical Image Analysis, 1(2), 91-108. doi:10.1016/s1361-8415(96)80007-7 es_ES
dc.description.references Xiaolan Zeng, Staib, L. H., Schultz, R. T., & Duncan, J. S. (1999). Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation. IEEE Transactions on Medical Imaging, 18(10), 927-937. doi:10.1109/42.811276 es_ES
dc.description.references MacDonald, D., Kabani, N., Avis, D., & Evans, A. C. (2000). Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI. NeuroImage, 12(3), 340-356. doi:10.1006/nimg.1999.0534 es_ES
dc.description.references Colliot, O., Bernasconi, N., Khalili, N., Antel, S. B., Naessens, V., & Bernasconi, A. (2006). Individual voxel-based analysis of gray matter in focal cortical dysplasia. NeuroImage, 29(1), 162-171. doi:10.1016/j.neuroimage.2005.07.021 es_ES
dc.description.references Wilke, M., Kassubek, J., Ziyeh, S., Schulze-Bonhage, A., & Huppertz, H. . (2003). Automated detection of gray matter malformations using optimized voxel-based morphometry: a systematic approach. NeuroImage, 20(1), 330-343. doi:10.1016/s1053-8119(03)00296-9 es_ES
dc.description.references Krsek, P., Maton, B., Korman, B., Pacheco-Jacome, E., Jayakar, P., Dunoyer, C., … Duchowny, M. (2008). Different features of histopathological subtypes of pediatric focal cortical dysplasia. Annals of Neurology, 63(6), 758-769. doi:10.1002/ana.21398 es_ES
dc.description.references Kini, L. G., Gee, J. C., & Litt, B. (2016). Computational analysis in epilepsy neuroimaging: A survey of features and methods. NeuroImage: Clinical, 11, 515-529. doi:10.1016/j.nicl.2016.02.013 es_ES
dc.description.references Halac, G., Delil, S., Zafer, D., Isler, C., Uzan, M., Comunoglu, N., … Ozkara, C. (2017). Compatibility of MRI and FDG-PET findings with histopathological results in patients with focal cortical dysplasia. Seizure, 45, 80-86. doi:10.1016/j.seizure.2016.11.024 es_ES
dc.description.references Huppertz, H.-J., Grimm, C., Fauser, S., Kassubek, J., Mader, I., Hochmuth, A., … Schulze-Bonhage, A. (2005). Enhanced visualization of blurred gray–white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Research, 67(1-2), 35-50. doi:10.1016/j.eplepsyres.2005.07.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem