- -

Chemical tuning for potential antitumor fluoroquinolones

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chemical tuning for potential antitumor fluoroquinolones

Mostrar el registro completo del ítem

Anaya-González, C.; Soldevila Serrano, S.; García-Laínez, G.; Bosca Mayans, F.; Andreu Ros, MI. (2019). Chemical tuning for potential antitumor fluoroquinolones. Free Radical Biology and Medicine. 141:150-158. https://doi.org/10.1016/j.freeradbiomed.2019.06.010

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166533

Ficheros en el ítem

Metadatos del ítem

Título: Chemical tuning for potential antitumor fluoroquinolones
Autor: Anaya-González, Cristina Soldevila Serrano, Sonia García-Laínez, Guillermo Bosca Mayans, Francisco Andreu Ros, María Inmaculada
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Phototoxic effects of 6,8 dihalogenated quinolones confers to this type of molecules a potential property as photochemotherapeutic agents. Two photodehalogenation processes seem to be involved in the remarkable ...[+]
Palabras clave: Excited states , Fluorescence emission , Laser flash photolysis , Photodehalogenation process , Phototoxicity test
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Free Radical Biology and Medicine. (issn: 0891-5849 )
DOI: 10.1016/j.freeradbiomed.2019.06.010
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.freeradbiomed.2019.06.010
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2014-54729-C2-2-P/ES/DISEÑO DE NUEVAS PRODROGAS ANTICANCERIGENAS FOTOACTIVABLES/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/
Agradecimientos:
Financial support from Spanish government (MINECO grant CTQ2014-54729-C2-2-P and Severo Ochoa fellowship for C. A., Carlos III Institute of Health grant PI16/01877), and the Generalitat Valenciana (PROMETEO program, ...[+]
Tipo: Artículo

References

Domagala, J. M., Hanna, L. D., Heifetz, C. L., Hutt, M. P., Mich, T. F., Sanchez, J. P., & Solomon, M. (1986). New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. Journal of Medicinal Chemistry, 29(3), 394-404. doi:10.1021/jm00153a015

Kang, D.-H., Kim, J.-S., Jung, M.-J., Lee, E.-S., Jahng, Y., Kwon, Y., & Na, Y. (2008). New insight for fluoroquinophenoxazine derivatives as possibly new potent topoisomerase I inhibitor. Bioorganic & Medicinal Chemistry Letters, 18(4), 1520-1524. doi:10.1016/j.bmcl.2007.12.053

Azéma, J., Guidetti, B., Dewelle, J., Le Calve, B., Mijatovic, T., Korolyov, A., … Kiss, R. (2009). 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: Synthesis and in vitro biological evaluation as potential antitumor agents. Bioorganic & Medicinal Chemistry, 17(15), 5396-5407. doi:10.1016/j.bmc.2009.06.053 [+]
Domagala, J. M., Hanna, L. D., Heifetz, C. L., Hutt, M. P., Mich, T. F., Sanchez, J. P., & Solomon, M. (1986). New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. Journal of Medicinal Chemistry, 29(3), 394-404. doi:10.1021/jm00153a015

Kang, D.-H., Kim, J.-S., Jung, M.-J., Lee, E.-S., Jahng, Y., Kwon, Y., & Na, Y. (2008). New insight for fluoroquinophenoxazine derivatives as possibly new potent topoisomerase I inhibitor. Bioorganic & Medicinal Chemistry Letters, 18(4), 1520-1524. doi:10.1016/j.bmcl.2007.12.053

Azéma, J., Guidetti, B., Dewelle, J., Le Calve, B., Mijatovic, T., Korolyov, A., … Kiss, R. (2009). 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: Synthesis and in vitro biological evaluation as potential antitumor agents. Bioorganic & Medicinal Chemistry, 17(15), 5396-5407. doi:10.1016/j.bmc.2009.06.053

Cullen, M., & Baijal, S. (2009). Prevention of febrile neutropenia: use of prophylactic antibiotics. British Journal of Cancer, 101(S1), S11-S14. doi:10.1038/sj.bjc.6605270

Kim, K., Pollard, J. M., Norris, A. J., McDonald, J. T., Sun, Y., Micewicz, E., … McBride, W. H. (2009). High-Throughput Screening Identifies Two Classes of Antibiotics as Radioprotectors: Tetracyclines and Fluoroquinolones. Clinical Cancer Research, 15(23), 7238-7245. doi:10.1158/1078-0432.ccr-09-1964

Al-Trawneh, S. A., Zahra, J. A., Kamal, M. R., El-Abadelah, M. M., Zani, F., Incerti, M., … Vicini, P. (2010). Synthesis and biological evaluation of tetracyclic fluoroquinolones as antibacterial and anticancer agents. Bioorganic & Medicinal Chemistry, 18(16), 5873-5884. doi:10.1016/j.bmc.2010.06.098

Aldred, K. J., Schwanz, H. A., Li, G., Williamson, B. H., McPherson, S. A., Turnbough, C. L., … Osheroff, N. (2015). Activity of Quinolone CP-115,955 Against Bacterial and Human Type II Topoisomerases Is Mediated by Different Interactions. Biochemistry, 54(5), 1278-1286. doi:10.1021/bi501073v

Pommier, Y., Leo, E., Zhang, H., & Marchand, C. (2010). DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chemistry & Biology, 17(5), 421-433. doi:10.1016/j.chembiol.2010.04.012

Palumbo, M., Gatto, B., Zagotto, G., & Palù, G. (1993). On the mechanism of action of quinolone drugs. Trends in Microbiology, 1(6), 232-235. doi:10.1016/0966-842x(93)90138-h

Paul, M., Gafter-Gvili, A., Fraser, A., & Leibovici, L. (2007). The anti-cancer effects of quinolone antibiotics? European Journal of Clinical Microbiology & Infectious Diseases, 26(11), 825-831. doi:10.1007/s10096-007-0375-4

Perrone, C. E. (2002). Inhibition of Human Topoisomerase IIalpha by Fluoroquinolones and Ultraviolet A Irradiation. Toxicological Sciences, 69(1), 16-22. doi:10.1093/toxsci/69.1.16

Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x

Marrot, L., Belaïdi, J. P., Jones, C., Perez, P., Meunier, J. R., Riou, L., & Sarasin, A. (2003). Molecular Responses to Photogenotoxic Stress Induced by the Antibiotic Lomefloxacin in Human Skin Cells: From DNA Damage to Apoptosis. Journal of Investigative Dermatology, 121(3), 596-606. doi:10.1046/j.1523-1747.2003.12422.x

Meunier, J.-R., Sarasin, A., & Marrot, L. (2002). Photogenotoxicity of Mammalian Cells: A Review of the Different Assays for In Vitro Testing¶. Photochemistry and Photobiology, 75(5), 437. doi:10.1562/0031-8655(2002)075<0437:pomcar>2.0.co;2

Martinez, L. J., Li, G., & Chignell, C. F. (1997). Photogeneration of Fluoride by the Fluoroquinolone Antimicrobial Agents Lomefloxacin and Fleroxacin. Photochemistry and Photobiology, 65(3), 599-602. doi:10.1111/j.1751-1097.1997.tb08612.x

Chignell, C. F., Haseman, J. K., Sik, R. H., Tennant, R. W., & Trempus, C. S. (2003). Photocarcinogenesis in the Tg.AC Mouse: Lomefloxacin and 8-Methoxypsoralen¶†. Photochemistry and Photobiology, 77(1), 77. doi:10.1562/0031-8655(2003)077<0077:pittam>2.0.co;2

Fasani, E., Profumo, A., & Albini, A. (1998). Structure and Medium-Dependent Photodecomposition of Fluoroquinolone Antibiotics. Photochemistry and Photobiology, 68(5), 666-674. doi:10.1111/j.1751-1097.1998.tb02527.x

Jeffrey, A. M., Shao, L., Brendler-Schwaab, S. Y., Schlüter, G., & Williams, G. M. (2000). Photochemical mutagenicity of phototoxic and photochemically carcinogenic fluoroquinolones in comparison with the photostable moxifloxacin. Archives of Toxicology, 74(9), 555-559. doi:10.1007/s002040000162

Spratt, T. E., Schultz, S. S., Levy, D. E., Chen, D., Schlüter, G., & Williams, G. M. (1999). Different Mechanisms for the Photoinduced Production of Oxidative DNA Damage by Fluoroquinolones Differing in Photostability. Chemical Research in Toxicology, 12(9), 809-815. doi:10.1021/tx980224j

Reus, A. A., Usta, M., Kenny, J. D., Clements, P. J., Pruimboom-Brees, I., Aylott, M., … Krul, C. A. . (2012). The in vivo rat skin photomicronucleus assay: phototoxicity and photogenotoxicity evaluation of six fluoroquinolones. Mutagenesis, 27(6), 721-729. doi:10.1093/mutage/ges038

Soldevila, S., & Bosca, F. (2012). Photoreactivity of Fluoroquinolones: Nature of Aryl Cations Generated in Water. Organic Letters, 14(15), 3940-3943. doi:10.1021/ol301694p

Cuquerella, M. C., Miranda, M. A., & Boscá, F. (2006). Generation of Detectable Singlet Aryl Cations by Photodehalogenation of Fluoroquinolones. The Journal of Physical Chemistry B, 110(13), 6441-6443. doi:10.1021/jp060634d

Freccero, M., Fasani, E., Mella, M., Manet, I., Monti, S., & Albini, A. (2008). Modeling the Photochemistry of the Reference Phototoxic Drug Lomefloxacin by Steady-State and Time-Resolved Experiments, and DFT and Post-HF Calculations. Chemistry - A European Journal, 14(2), 653-663. doi:10.1002/chem.200701099

Albini, A., & Monti, S. (2003). Photophysics and photochemistry of fluoroquinolones. Chemical Society Reviews, 32(4), 238. doi:10.1039/b209220b

Fasani, E., Manet, I., Capobianco, M. L., Monti, S., Pretali, L., & Albini, A. (2010). Fluoroquinolones as potential photochemotherapeutic agents: covalent addition to guanosine monophosphate. Organic & Biomolecular Chemistry, 8(16), 3621. doi:10.1039/c0ob00056f

Soldevila, S., Cuquerella, M. C., & Bosca, F. (2014). Understanding of the Photoallergic Properties of Fluoroquinolones: Photoreactivity of Lomefloxacin with Amino Acids and Albumin. Chemical Research in Toxicology, 27(4), 514-523. doi:10.1021/tx400377s

Soldevila, S., Consuelo Cuquerella, M., Lhiaubet-Vallet, V., Edge, R., & Bosca, F. (2014). Seeking the mechanism responsible for fluoroquinolone photomutagenicity: a pulse radiolysis, steady-state, and laser flash photolysis study. Free Radical Biology and Medicine, 67, 417-425. doi:10.1016/j.freeradbiomed.2013.11.027

Domagala, J. M., Heifetz, C. L., Hutt, M. P., Mich, T. F., Nichols, J. B., Solomon, M., & Worth, D. F. (1988). 1-Substituted 7-[3-[(ethylamino)methyl]-1-pyrrolidinyl]-6,8-difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids. New quantitative structure activity relationships at N1 for the quinolone antibacterials. Journal of Medicinal Chemistry, 31(5), 991-1001. doi:10.1021/jm00400a017

Schmidt, R., Tanielian, C., Dunsbach, R., & Wolff, C. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. Journal of Photochemistry and Photobiology A: Chemistry, 79(1-2), 11-17. doi:10.1016/1010-6030(93)03746-4

Garcia-Lainez, G., Martínez-Reig, A. M., Limones-Herrero, D., Consuelo Jiménez, M., Miranda, M. A., & Andreu, I. (2018). Photo(geno)toxicity changes associated with hydroxylation of the aromatic chromophores during diclofenac metabolism. Toxicology and Applied Pharmacology, 341, 51-55. doi:10.1016/j.taap.2018.01.005

Palumbo, F., Garcia-Lainez, G., Limones-Herrero, D., Coloma, M. D., Escobar, J., Jiménez, M. C., … Andreu, I. (2016). Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicology and Applied Pharmacology, 313, 131-137. doi:10.1016/j.taap.2016.10.024

Martinez, L. J., Sik, R. H., & Chignell, C. F. (1998). Fluoroquinolone Antimicrobials: Singlet Oxygen, Superoxide and Phototoxicity. Photochemistry and Photobiology, 67(4), 399-403. doi:10.1111/j.1751-1097.1998.tb05217.x

Fasani, E., Monti, S., Manet, I., Tilocca, F., Pretali, L., Mella, M., & Albini, A. (2009). Inter- and Intramolecular Photochemical Reactions of Fleroxacin. Organic Letters, 11(9), 1875-1878. doi:10.1021/ol900189v

Belvedere, A., Boscá, F., Catalfo, A., Cuquerella, M. C., de Guidi, G., & Miranda, M. A. (2002). Type II Guanine Oxidation Photoinduced by the Antibacterial Fluoroquinolone Rufloxacin in Isolated DNA and in 2‘-Deoxyguanosine. Chemical Research in Toxicology, 15(9), 1142-1149. doi:10.1021/tx025530i

Cuquerella, M. C., Boscá, F., Miranda, M. A., Belvedere, A., Catalfo, A., & de Guidi, G. (2003). Photochemical Properties of Ofloxacin Involved in Oxidative DNA Damage:  A Comparison with Rufloxacin. Chemical Research in Toxicology, 16(4), 562-570. doi:10.1021/tx034006o

Monti, S., & Sortino, S. (2002). Laser flash photolysis study of photoionization in fluoroquinolones. Photochemical & Photobiological Sciences, 1(11), 877-881. doi:10.1039/b206750a

Seto, Y., Inoue, R., Ochi, M., Gandy, G., Yamada, S., & Onoue, S. (2011). Combined Use of In Vitro Phototoxic Assessments and Cassette Dosing Pharmacokinetic Study for Phototoxicity Characterization of Fluoroquinolones. The AAPS Journal, 13(3). doi:10.1208/s12248-011-9292-7

Sauvaigo, S., Douki, T., Odin, F., Caillat, S., Ravanat, J.-L., & Cadet, J. (2001). Analysis of Fluoroquinolone-mediated Photosensitization of 2′-Deoxyguanosine, Calf Thymus and Cellular DNA: Determination of Type-I, Type-II and Triplet–Triplet Energy Transfer Mechanism Contribution¶. Photochemistry and Photobiology, 73(3), 230. doi:10.1562/0031-8655(2001)073<0230:aofmpo>2.0.co;2

Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e

[-]

recommendations

Sorry the service is unavailable at the moment. Please try again later.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem