- -

Using Keystroke Dynamics in a Multi-Agent System for User Guiding in Online Social Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using Keystroke Dynamics in a Multi-Agent System for User Guiding in Online Social Networks

Mostrar el registro completo del ítem

Aguado-Sarrió, G.; Julian Inglada, VJ.; García-Fornes, A.; Espinosa Minguet, AR. (2020). Using Keystroke Dynamics in a Multi-Agent System for User Guiding in Online Social Networks. Applied Sciences. 10(11):1-20. https://doi.org/10.3390/app10113754

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166534

Ficheros en el ítem

Metadatos del ítem

Título: Using Keystroke Dynamics in a Multi-Agent System for User Guiding in Online Social Networks
Autor: Aguado-Sarrió, Guillem Julian Inglada, Vicente Javier García-Fornes, A Espinosa Minguet, Agustín Rafael
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Nowadays there is a strong integration of online social platforms and applications with our daily life. Such interactions can make risks arise and compromise the information we share, thereby leading to privacy issues. ...[+]
Palabras clave: Multi-agent system , Social networks , Sentiment analysis , Stress analysis , Keystroke dynamics
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10113754
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10113754
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89156-R/ES/AGENTES INTELIGENTES PARA ASESORAR EN PRIVACIDAD EN REDES SOCIALES/
Agradecimientos:
This work was funded by the project TIN2017-89156-R of the Spanish government.
Tipo: Artículo

References

O’Keeffe, G. S., & Clarke-Pearson, K. (2011). The Impact of Social Media on Children, Adolescents, and Families. PEDIATRICS, 127(4), 800-804. doi:10.1542/peds.2011-0054

George, J. M., & Dane, E. (2016). Affect, emotion, and decision making. Organizational Behavior and Human Decision Processes, 136, 47-55. doi:10.1016/j.obhdp.2016.06.004

Thelwall, M. (2017). TensiStrength: Stress and relaxation magnitude detection for social media texts. Information Processing & Management, 53(1), 106-121. doi:10.1016/j.ipm.2016.06.009 [+]
O’Keeffe, G. S., & Clarke-Pearson, K. (2011). The Impact of Social Media on Children, Adolescents, and Families. PEDIATRICS, 127(4), 800-804. doi:10.1542/peds.2011-0054

George, J. M., & Dane, E. (2016). Affect, emotion, and decision making. Organizational Behavior and Human Decision Processes, 136, 47-55. doi:10.1016/j.obhdp.2016.06.004

Thelwall, M. (2017). TensiStrength: Stress and relaxation magnitude detection for social media texts. Information Processing & Management, 53(1), 106-121. doi:10.1016/j.ipm.2016.06.009

Aguado, G., Julian, V., & Garcia-Fornes, A. (2018). Towards Aiding Decision-Making in Social Networks by Using Sentiment and Stress Combined Analysis. Information, 9(5), 107. doi:10.3390/info9050107

Schouten, K., & Frasincar, F. (2016). Survey on Aspect-Level Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813-830. doi:10.1109/tkde.2015.2485209

Lee, P.-M., Tsui, W.-H., & Hsiao, T.-C. (2015). The Influence of Emotion on Keyboard Typing: An Experimental Study Using Auditory Stimuli. PLOS ONE, 10(6), e0129056. doi:10.1371/journal.pone.0129056

Vizer, L. M., Zhou, L., & Sears, A. (2009). Automated stress detection using keystroke and linguistic features: An exploratory study. International Journal of Human-Computer Studies, 67(10), 870-886. doi:10.1016/j.ijhcs.2009.07.005

Huang, F., Zhang, X., Zhao, Z., Xu, J., & Li, Z. (2019). Image–text sentiment analysis via deep multimodal attentive fusion. Knowledge-Based Systems, 167, 26-37. doi:10.1016/j.knosys.2019.01.019

Mehrabian, A. (1996). Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament. Current Psychology, 14(4), 261-292. doi:10.1007/bf02686918

Ulinskas, M., Damaševičius, R., Maskeliūnas, R., & Woźniak, M. (2018). Recognition of human daytime fatigue using keystroke data. Procedia Computer Science, 130, 947-952. doi:10.1016/j.procs.2018.04.094

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem