- -

Deep Learning Architectures and Strategies for Early Detection of Self-harm and Depression Level Prediction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Learning Architectures and Strategies for Early Detection of Self-harm and Depression Level Prediction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Uban, Ana-Sabina es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2021-05-20T03:34:27Z
dc.date.available 2021-05-20T03:34:27Z
dc.date.issued 2020 es_ES
dc.identifier.issn 1613-0073 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166536
dc.description.abstract [EN] This paper summarizes the contributions of the PRHLT- UPV team as a participant in the eRisk 2020 tasks on self-harm detection and prediction of depression levels from social media. Computational methods based on machine learning and natural language processing have a great potential to assist with early detection of mental disorders of social media users, based on their online activity.We use multi-dimensional representations of language, and compare various deep learning models' performance, exploring rarely approached avenues in previous research, including hierarchical deep learning architectures and pre-trained transformers and language models. es_ES
dc.description.sponsorship The work of Paolo Rosso was in the framework of the research project PROMETEO/2019/121 (DeepPattern) by the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Sun SITE Central Europe es_ES
dc.relation.ispartof CEUR Workshop Proceedings es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Deep learning es_ES
dc.subject Mental disorders es_ES
dc.subject BERT es_ES
dc.subject Hierarchical attention network es_ES
dc.subject Self-harm es_ES
dc.subject Depression es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Deep Learning Architectures and Strategies for Early Detection of Self-harm and Depression Level Prediction es_ES
dc.type Artículo es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Uban, A.; Rosso, P. (2020). Deep Learning Architectures and Strategies for Early Detection of Self-harm and Depression Level Prediction. CEUR Workshop Proceedings. 2696:1-12. http://hdl.handle.net/10251/166536 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://ceur-ws.org/Vol-2696/ es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2696 es_ES
dc.relation.pasarela S\434945 es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem