- -

A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Daliran, Saba es_ES
dc.contributor.author Ghazagh-Miri, Mahbobeh es_ES
dc.contributor.author Oveisi, Ali Reza es_ES
dc.contributor.author Khajeh, Mostafa es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Ghaffari-Moghaddam, Mansour es_ES
dc.contributor.author Delarami, Hojat Samareh es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-05-20T03:34:29Z
dc.date.available 2021-05-20T03:34:29Z
dc.date.issued 2020-06-03 es_ES
dc.identifier.issn 1944-8244 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166537
dc.description.abstract [EN] This work reports the synthesis of pyridyltriazol-functionalized UiO-66 (UiO stands for University of Oslo), namely, UiO-66-Pyta, from UiO-66-NH2 through three postsynthetic modification (PSM) steps. The good performance of the material derives from the observation that partial formylation (similar to 21% of -NHCHO groups) of H2BDC-NH2 by DMF, as persistent impurity, takes place during the synthesis of the UiO-66-NH2. Thus, to enhance material performance, first, the as-synthesized UiO-66-NH2 was deformylated to give pure UiO-66-NH2. Subsequently, the pure UiO-66-NH2 was converted to UiO-66-N-3 with a nearly complete conversion (similar to 95%). Finally, the azide-alkyne[3+2]-cycloaddition reaction of 2-ethynylpyridine with the UiO-66-N-3 gave the UiO-66-Pyta. The porous MOF was then applied for the solid-phase extraction of palladium ions from an aqueous medium. Affecting parameters on extraction efficiency of Pd(II) ions were also investigated and optimized. Interestingly, UiO-66-Pyta exhibited selective and superior adsorption capacity for Pd(II) with a maximum sorption capacity of 294.1 mg.g(-1) at acidic pH (4.5). The limit of detection (LOD) was found to be 1.9 mu g L-1. The estimated intra- and interday precisions are 3.6 and 1.7%, respectively. Moreover, the adsorbent was regenerated and reused for five cycles without any significant change in the capacity and repeatability. The adsorption mechanism was described based on various techniques such as FT-IR, PXRD, SEM/EDS, ICP-AES, and XPS analyses as well as density functional theory (DFT) calculations. Notably, as a case study, the obtained UiO-66-Pyta after palladium adsorption, UiO-66-Pyta-Pd, was used as an efficient catalyst for the Suzuki-Miyaura cross-coupling reaction. es_ES
dc.description.sponsorship Authors gratefully acknowledge the financial support for this work from the Politecnica de Valencia, Valencia, Spain. Also, financial support by the University of Zabol is gratefully acknowledged (grant nos. UOZ-GR-9517-1 and UOZ-GR-9618-53). es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Applied Materials & Interfaces es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Zirconium metal-organic framework es_ES
dc.subject UiO-66-NH2 es_ES
dc.subject Pyta-functionalized Zr-MOF es_ES
dc.subject Heavy metal adsorption es_ES
dc.subject Extraction es_ES
dc.subject Density functional theory es_ES
dc.subject Postsynthetic modification es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Palladium es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acsami.0c06672 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UOZ//UOZ-GR-9517-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UOZ//UOZ-GR-9618-53/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Daliran, S.; Ghazagh-Miri, M.; Oveisi, AR.; Khajeh, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Ghaffari-Moghaddam, M.... (2020). A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium. ACS Applied Materials & Interfaces. 12(22):25221-25232. https://doi.org/10.1021/acsami.0c06672 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acsami.0c06672 es_ES
dc.description.upvformatpinicio 25221 es_ES
dc.description.upvformatpfin 25232 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 22 es_ES
dc.identifier.pmid 32368890 es_ES
dc.relation.pasarela S\430202 es_ES
dc.contributor.funder University of Zabol es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Zereini, F., & Alt, F. (Eds.). (2006). Palladium Emissions in the Environment. doi:10.1007/3-540-29220-9 es_ES
dc.description.references Rao, C. R. ., & Reddi, G. . (2000). Platinum group metals (PGM); occurrence, use and recent trends in their determination. TrAC Trends in Analytical Chemistry, 19(9), 565-586. doi:10.1016/s0165-9936(00)00031-5 es_ES
dc.description.references Sharma, S., Krishna Kumar, A. S., & Rajesh, N. (2017). A perspective on diverse adsorbent materials to recover precious palladium and the way forward. RSC Advances, 7(82), 52133-52142. doi:10.1039/c7ra10153h es_ES
dc.description.references Crundwell, F. K., Moats, M. S., Ramachandran, V., Robinson, T. G., & Davenport, W. G. (2011). Platinum-Group Metals, Production, Use and Extraction Costs. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, 395-409. doi:10.1016/b978-0-08-096809-4.10031-0 es_ES
dc.description.references Cieszynska, A., & Wieczorek, D. (2018). Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy, 175, 359-366. doi:10.1016/j.hydromet.2017.12.019 es_ES
dc.description.references Ghezzi, L., Robinson, B. H., Secco, F., Tiné, M. R., & Venturini, M. (2008). Removal and recovery of palladium(II) ions from water using micellar-enhanced ultrafiltration with a cationic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 329(1-2), 12-17. doi:10.1016/j.colsurfa.2008.06.037 es_ES
dc.description.references Mahmoud, A., & Hoadley, A. F. A. (2012). An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Research, 46(10), 3364-3376. doi:10.1016/j.watres.2012.03.039 es_ES
dc.description.references Fotovat, H., Khajeh, M., Oveisi, A. R., Ghaffari-Moghaddam, M., & Daliran, S. (2018). A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI). Microchimica Acta, 185(10). doi:10.1007/s00604-018-2991-3 es_ES
dc.description.references Serencam, H., Bulut, V. N., Tufekci, M., Gundogdu, A., Duran, C., Hamza, S., & Soylak, M. (2013). Separation and pre-concentration of palladium(II) from environmental and industrial samples by formation of a derivative of 1,2,4-triazole complex on Amberlite XAD–2010 resin. International Journal of Environmental Analytical Chemistry, 93(14), 1484-1499. doi:10.1080/03067319.2012.755676 es_ES
dc.description.references Soylak, M., Elci, L., & Dogan, M. (2000). A Sorbent Extraction Procedure for the Preconcentration of Gold, Silver and Palladium on an Activated Carbon Column. Analytical Letters, 33(3), 513-525. doi:10.1080/00032710008543070 es_ES
dc.description.references Zhou, L., Xu, J., Liang, X., & Liu, Z. (2010). Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Journal of Hazardous Materials, 182(1-3), 518-524. doi:10.1016/j.jhazmat.2010.06.062 es_ES
dc.description.references Liu, L., Li, C., Bao, C., Jia, Q., Xiao, P., Liu, X., & Zhang, Q. (2012). Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta, 93, 350-357. doi:10.1016/j.talanta.2012.02.051 es_ES
dc.description.references Liu, L., Liu, S., Zhang, Q., Li, C., Bao, C., Liu, X., & Xiao, P. (2012). Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto Graphene Oxide. Journal of Chemical & Engineering Data, 58(2), 209-216. doi:10.1021/je300551c es_ES
dc.description.references Awual, M. R., Khaleque, M. A., Ratna, Y., & Znad, H. (2015). Simultaneous ultra-trace palladium(II) detection and recovery from wastewater using new class meso-adsorbent. Journal of Industrial and Engineering Chemistry, 21, 405-413. doi:10.1016/j.jiec.2014.02.053 es_ES
dc.description.references Sharma, S., Wu, C.-M., Koodali, R. T., & Rajesh, N. (2016). An ionic liquid-mesoporous silica blend as a novel adsorbent for the adsorption and recovery of palladium ions, and its applications in continuous flow study and as an industrial catalyst. RSC Advances, 6(32), 26668-26678. doi:10.1039/c5ra26673d es_ES
dc.description.references Lin, S., Kumar Reddy, D. H., Bediako, J. K., Song, M.-H., Wei, W., Kim, J.-A., & Yun, Y.-S. (2017). Effective adsorption of Pd(ii), Pt(iv) and Au(iii) by Zr(iv)-based metal–organic frameworks from strongly acidic solutions. Journal of Materials Chemistry A, 5(26), 13557-13564. doi:10.1039/c7ta02518a es_ES
dc.description.references Han, X., Yang, S., & Schröder, M. (2019). Porous metal–organic frameworks as emerging sorbents for clean air. Nature Reviews Chemistry, 3(2), 108-118. doi:10.1038/s41570-019-0073-7 es_ES
dc.description.references Chen, Z., Hanna, S. L., Redfern, L. R., Alezi, D., Islamoglu, T., & Farha, O. K. (2019). Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 386, 32-49. doi:10.1016/j.ccr.2019.01.017 es_ES
dc.description.references Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033b es_ES
dc.description.references Daliran, S., Santiago-Portillo, A., Navalón, S., Oveisi, A. R., Álvaro, M., Ghorbani-Vaghei, R., … García, H. (2018). Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH2 as heterogeneous catalyst for oxidation reactions. Journal of Colloid and Interface Science, 532, 700-710. doi:10.1016/j.jcis.2018.07.140 es_ES
dc.description.references Yin, Z., Wan, S., Yang, J., Kurmoo, M., & Zeng, M.-H. (2019). Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews, 378, 500-512. doi:10.1016/j.ccr.2017.11.015 es_ES
dc.description.references Tchalala, M. R., Bhatt, P. M., Chappanda, K. N., Tavares, S. R., Adil, K., Belmabkhout, Y., … Eddaoudi, M. (2019). Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nature Communications, 10(1). doi:10.1038/s41467-019-09157-2 es_ES
dc.description.references Zha, M., Liu, J., Wong, Y.-L., & Xu, Z. (2015). Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. Journal of Materials Chemistry A, 3(7), 3928-3934. doi:10.1039/c4ta06678b es_ES
dc.description.references Yuan, N., Pascanu, V., Huang, Z., Valiente, A., Heidenreich, N., Leubner, S., … Zou, X. (2018). Probing the Evolution of Palladium Species in Pd@MOF Catalysts during the Heck Coupling Reaction: An Operando X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 140(26), 8206-8217. doi:10.1021/jacs.8b03505 es_ES
dc.description.references Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h es_ES
dc.description.references Xiao, J.-D., & Jiang, H.-L. (2018). Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 52(2), 356-366. doi:10.1021/acs.accounts.8b00521 es_ES
dc.description.references Sun, D., Ye, L., & Li, Z. (2015). Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Applied Catalysis B: Environmental, 164, 428-432. doi:10.1016/j.apcatb.2014.09.054 es_ES
dc.description.references Rojas, S., Arenas-Vivo, A., & Horcajada, P. (2019). Metal-organic frameworks: A novel platform for combined advanced therapies. Coordination Chemistry Reviews, 388, 202-226. doi:10.1016/j.ccr.2019.02.032 es_ES
dc.description.references Bobbitt, N. S., Mendonca, M. L., Howarth, A. J., Islamoglu, T., Hupp, J. T., Farha, O. K., & Snurr, R. Q. (2017). Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 46(11), 3357-3385. doi:10.1039/c7cs00108h es_ES
dc.description.references Rojas, S., Baati, T., Njim, L., Manchego, L., Neffati, F., Abdeljelil, N., … Horcajada, P. (2018). Metal–Organic Frameworks as Efficient Oral Detoxifying Agents. Journal of the American Chemical Society, 140(30), 9581-9586. doi:10.1021/jacs.8b04435 es_ES
dc.description.references Yuan, S., Qin, J.-S., Lollar, C. T., & Zhou, H.-C. (2018). Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 4(4), 440-450. doi:10.1021/acscentsci.8b00073 es_ES
dc.description.references Bai, Y., Dou, Y., Xie, L.-H., Rutledge, W., Li, J.-R., & Zhou, H.-C. (2016). Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45(8), 2327-2367. doi:10.1039/c5cs00837a es_ES
dc.description.references Knapp, J. G., Zhang, X., Elkin, T., Wolfsberg, L. E., Hanna, S. L., Son, F. A., … Farha, O. K. (2020). Single crystal structure and photocatalytic behavior of grafted uranyl on the Zr-node of a pyrene-based metal–organic framework. CrystEngComm, 22(11), 2097-2102. doi:10.1039/c9ce02034a es_ES
dc.description.references Howarth, A. J., Katz, M. J., Wang, T. C., Platero-Prats, A. E., Chapman, K. W., Hupp, J. T., & Farha, O. K. (2015). High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. Journal of the American Chemical Society, 137(23), 7488-7494. doi:10.1021/jacs.5b03904 es_ES
dc.description.references Drout, R. J., Howarth, A. J., Otake, K., Islamoglu, T., & Farha, O. K. (2018). Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 20(40), 6140-6145. doi:10.1039/c8ce00992a es_ES
dc.description.references Audu, C. O., Nguyen, H. G. T., Chang, C.-Y., Katz, M. J., Mao, L., Farha, O. K., … Nguyen, S. T. (2016). The dual capture of AsV and AsIII by UiO-66 and analogues. Chemical Science, 7(10), 6492-6498. doi:10.1039/c6sc00490c es_ES
dc.description.references Kobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92-107. doi:10.1016/j.ccr.2017.12.010 es_ES
dc.description.references Ali Akbar Razavi, S., & Morsali, A. (2019). Linker functionalized metal-organic frameworks. Coordination Chemistry Reviews, 399, 213023. doi:10.1016/j.ccr.2019.213023 es_ES
dc.description.references Moghaddam, Z. S., Kaykhaii, M., Khajeh, M., & Oveisi, A. R. (2018). Synthesis of UiO-66-OH zirconium metal-organic framework and its application for selective extraction and trace determination of thorium in water samples by spectrophotometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 194, 76-82. doi:10.1016/j.saa.2018.01.010 es_ES
dc.description.references Chang, Z., Li, F., Qi, X., Jiang, B., Kou, J., & Sun, C. (2020). Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal-organic frameworks (MOFs): An unconventional way for gold recycling. Journal of Hazardous Materials, 391, 122175. doi:10.1016/j.jhazmat.2020.122175 es_ES
dc.description.references Yee, K.-K., Reimer, N., Liu, J., Cheng, S.-Y., Yiu, S.-M., Weber, J., … Xu, Z. (2013). Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: in Strong Acid and the Vapor Phase. Journal of the American Chemical Society, 135(21), 7795-7798. doi:10.1021/ja400212k es_ES
dc.description.references Fu, L., Wang, S., Lin, G., Zhang, L., Liu, Q., Zhou, H., … Wen, S. (2019). Post-modification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(II) in aqueous media. Journal of Cleaner Production, 229, 470-479. doi:10.1016/j.jclepro.2019.05.043 es_ES
dc.description.references Saleem, H., Rafique, U., & Davies, R. P. (2016). Investigations on post-synthetically modified UiO-66-NH 2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous and Mesoporous Materials, 221, 238-244. doi:10.1016/j.micromeso.2015.09.043 es_ES
dc.description.references Peng, Y., Huang, H., Zhang, Y., Kang, C., Chen, S., Song, L., … Zhong, C. (2018). A versatile MOF-based trap for heavy metal ion capture and dispersion. Nature Communications, 9(1). doi:10.1038/s41467-017-02600-2 es_ES
dc.description.references Jindabot, S., Teerachanan, K., Thongkam, P., Kiatisevi, S., Khamnaen, T., Phiriyawirut, P., … Sangtrirutnugul, P. (2014). Palladium(II) complexes featuring bidentate pyridine–triazole ligands: Synthesis, structures, and catalytic activities for Suzuki–Miyaura coupling reactions. Journal of Organometallic Chemistry, 750, 35-40. doi:10.1016/j.jorganchem.2013.10.046 es_ES
dc.description.references Ervithayasuporn, V., Kwanplod, K., Boonmak, J., Youngme, S., & Sangtrirutnugul, P. (2015). Homogeneous and heterogeneous catalysts of organopalladium functionalized-polyhedral oligomeric silsesquioxanes for Suzuki–Miyaura reaction. Journal of Catalysis, 332, 62-69. doi:10.1016/j.jcat.2015.09.014 es_ES
dc.description.references Pintado-Sierra, M., Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2013). Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 299, 137-145. doi:10.1016/j.jcat.2012.12.004 es_ES
dc.description.references Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x es_ES
dc.description.references Zhao, Y., & Truhlar, D. G. (2005). Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. The Journal of Physical Chemistry A, 109(25), 5656-5667. doi:10.1021/jp050536c es_ES
dc.description.references Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Rev. A.02, Gaussian Inc.: Wallingford, CT, 2009. es_ES
dc.description.references Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799 es_ES
dc.description.references Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82(1), 299-310. doi:10.1063/1.448975 es_ES
dc.description.references Azarifar, D., Ghorbani-Vaghei, R., Daliran, S., & Oveisi, A. R. (2017). A Multifunctional Zirconium-Based Metal-Organic Framework for the One-Pot Tandem Photooxidative Passerini Three-Component Reaction of Alcohols. ChemCatChem, 9(11), 1992-2000. doi:10.1002/cctc.201700169 es_ES
dc.description.references Wang, X., Chen, W., Zhang, L., Yao, T., Liu, W., Lin, Y., … Li, Y. (2017). Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 139(28), 9419-9422. doi:10.1021/jacs.7b01686 es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Liang, H. F., & Wang, Z. C. (2010). Adsorption of bovine serum albumin on functionalized silica-coated magnetic MnFe2O4 nanoparticles. Materials Chemistry and Physics, 124(2-3), 964-969. doi:10.1016/j.matchemphys.2010.07.073 es_ES
dc.description.references Wu, R., Qu, J., & Chen, Y. (2005). Magnetic powder MnO–Fe2O3 composite—a novel material for the removal of azo-dye from water. Water Research, 39(4), 630-638. doi:10.1016/j.watres.2004.11.005 es_ES
dc.description.references Tan, Y., Wang, K., Yan, Q., Zhang, S., Li, J., & Ji, Y. (2019). Synthesis of Amino-Functionalized Waste Wood Flour Adsorbent for High-Capacity Pb(II) Adsorption. ACS Omega, 4(6), 10475-10484. doi:10.1021/acsomega.9b00920 es_ES
dc.description.references Howarth, A. J., Liu, Y., Hupp, J. T., & Farha, O. K. (2015). Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 17(38), 7245-7253. doi:10.1039/c5ce01428j es_ES
dc.description.references Nagarjuna, R., Sharma, S., Rajesh, N., & Ganesan, R. (2017). Effective Adsorption of Precious Metal Palladium over Polyethyleneimine-Functionalized Alumina Nanopowder and Its Reusability as a Catalyst for Energy and Environmental Applications. ACS Omega, 2(8), 4494-4504. doi:10.1021/acsomega.7b00431 es_ES
dc.description.references Veerakumar, P., Thanasekaran, P., Lu, K.-L., Liu, S.-B., & Rajagopal, S. (2017). Functionalized Silica Matrices and Palladium: A Versatile Heterogeneous Catalyst for Suzuki, Heck, and Sonogashira Reactions. ACS Sustainable Chemistry & Engineering, 5(8), 6357-6376. doi:10.1021/acssuschemeng.7b00921 es_ES
dc.description.references Singuru, R., Dhanalaxmi, K., Shit, S. C., Reddy, B. M., & Mondal, J. (2017). Palladium Nanoparticles Encaged in a Nitrogen-Rich Porous Organic Polymer: Constructing a Promising Robust Nanoarchitecture for Catalytic Biofuel Upgrading. ChemCatChem, 9(13), 2550-2564. doi:10.1002/cctc.201700186 es_ES
dc.description.references Liu, J., Hao, J., Hu, C., He, B., Xi, J., Xiao, J., … Bai, Z. (2018). Palladium Nanoparticles Anchored on Amine-Functionalized Silica Nanotubes as a Highly Effective Catalyst. The Journal of Physical Chemistry C, 122(5), 2696-2703. doi:10.1021/acs.jpcc.7b10237 es_ES
dc.description.references Fortgang, P., Tite, T., Barnier, V., Zehani, N., Maddi, C., Lagarde, F., … Chaix, C. (2016). Robust Electrografting on Self-Organized 3D Graphene Electrodes. ACS Applied Materials & Interfaces, 8(2), 1424-1433. doi:10.1021/acsami.5b10647 es_ES
dc.description.references Bi, F., Zhang, X., Chen, J., Yang, Y., & Wang, Y. (2020). Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Applied Catalysis B: Environmental, 269, 118767. doi:10.1016/j.apcatb.2020.118767 es_ES
dc.description.references Jiang, D., Fang, G., Tong, Y., Wu, X., Wang, Y., Hong, D., … Li, X. (2018). Multifunctional Pd@UiO-66 Catalysts for Continuous Catalytic Upgrading of Ethanol to n-Butanol. ACS Catalysis, 8(12), 11973-11978. doi:10.1021/acscatal.8b04014 es_ES
dc.description.references Nguyen, H. G. T., Mao, L., Peters, A. W., Audu, C. O., Brown, Z. J., Farha, O. K., … Nguyen, S. T. (2015). Comparative study of titanium-functionalized UiO-66: support effect on the oxidation of cyclohexene using hydrogen peroxide. Catalysis Science & Technology, 5(9), 4444-4451. doi:10.1039/c5cy00825e es_ES
dc.description.references Wang, C., Liu, X., Chen, J. P., & Li, K. (2015). Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Scientific Reports, 5(1). doi:10.1038/srep16613 es_ES
dc.description.references Manna, K., Ji, P., Lin, Z., Greene, F. X., Urban, A., Thacker, N. C., & Lin, W. (2016). Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes. Nature Communications, 7(1). doi:10.1038/ncomms12610 es_ES
dc.description.references Pearson, R. G. (1963). Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85(22), 3533-3539. doi:10.1021/ja00905a001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem