Mostrar el registro sencillo del ítem
dc.contributor.author | Romero, Guillermo | es_ES |
dc.contributor.author | Fuertes-Miquel, Vicente S. | es_ES |
dc.contributor.author | Coronado-Hernández, Óscar E. | es_ES |
dc.contributor.author | Ponz-Carcelén, Román | es_ES |
dc.contributor.author | Biel-Sanchis, Francisco | es_ES |
dc.date.accessioned | 2021-05-21T03:31:33Z | |
dc.date.available | 2021-05-21T03:31:33Z | |
dc.date.issued | 2020-08-04 | es_ES |
dc.identifier.issn | 1573-062X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166577 | |
dc.description.abstract | [EN] During the filling process in pressurized hydraulic systems, sudden pressure changes generated inside the pipes can cause significant damage. To avoid these excessive overpressures, air valves should be installed to allow air exchange between the inside and outside during the filling process. This study presents a mathematical model to analyse the hydraulic transients during filling processes. This model, which has already been validated in small laboratories, is now applied to real large-scale systems that consist of DN400 and DN600 pipelines from Empresa Mixta Metropolitana S.A (EMIMET - Group Global Omnium), which is the company that manages the water supply of the metropolitan area of Valencia (from the Drinking Water Treatment Station to the municipalities). The mathematical model for large pipes is validated by comparing the experimental measurements and the results of model. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Urban Water Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hydraulic transients | es_ES |
dc.subject | Filling of pipelines | es_ES |
dc.subject | Trapped air | es_ES |
dc.subject | Air valves | es_ES |
dc.subject | Mathematical model | es_ES |
dc.subject | Large-scale facilities | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.title | Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/1573062X.2020.1800762 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Romero, G.; Fuertes-Miquel, VS.; Coronado-Hernández, ÓE.; Ponz-Carcelén, R.; Biel-Sanchis, F. (2020). Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations. Urban Water Journal. 17(6):568-575. https://doi.org/10.1080/1573062X.2020.1800762 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/1573062X.2020.1800762 | es_ES |
dc.description.upvformatpinicio | 568 | es_ES |
dc.description.upvformatpfin | 575 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\433528 | es_ES |
dc.description.references | Abreu, J., Cabrera, E., Izquierdo, J., & García-Serra, J. (1999). Flow Modeling in Pressurized Systems Revisited. Journal of Hydraulic Engineering, 125(11), 1154-1169. doi:10.1061/(asce)0733-9429(1999)125:11(1154) | es_ES |
dc.description.references | Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025 | es_ES |
dc.description.references | Balacco, G., Apollonio, C., & Piccinni, A. F. (2015). Experimental analysis of air valve behaviour during hydraulic transients. Journal of Applied Water Engineering and Research, 3(1), 3-11. doi:10.1080/23249676.2015.1032374 | es_ES |
dc.description.references | Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1 | es_ES |
dc.description.references | Chaudhry, M. H. (2014). Applied Hydraulic Transients. doi:10.1007/978-1-4614-8538-4 | es_ES |
dc.description.references | Coronado-Hernández, Ó. E., Besharat, M., Fuertes-Miquel, V. S., & Ramos, H. M. (2019). Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: a Numerical and Experimental Analysis. Water, 11(9), 1814. doi:10.3390/w11091814 | es_ES |
dc.description.references | Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578 | es_ES |
dc.description.references | Fuertes-Miquel, V. S. 2001. “Hydraulic Transients with Entrapped Air Pockets.” PhD diss., Department of Hydraulic Engineering, Polytechnic University of Valencia, Spain. | es_ES |
dc.description.references | Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465 | es_ES |
dc.description.references | Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188 | es_ES |
dc.description.references | García-Todolí, S., Iglesias-Rey, P., Mora-Meliá, D., Martínez-Solano, F., & Fuertes-Miquel, V. (2018). Computational Determination of Air Valves Capacity Using CFD Techniques. Water, 10(10), 1433. doi:10.3390/w10101433 | es_ES |
dc.description.references | Hou, Q., Tijsseling, A. S., Laanearu, J., Annus, I., Koppel, T., Bergant, A., … van ’t Westende, J. M. C. (2014). Experimental Investigation on Rapid Filling of a Large-Scale Pipeline. Journal of Hydraulic Engineering, 140(11), 04014053. doi:10.1061/(asce)hy.1943-7900.0000914 | es_ES |
dc.description.references | Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518 | es_ES |
dc.description.references | Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631 | es_ES |
dc.description.references | Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/00221680903565911 | es_ES |
dc.description.references | Liou, C. P., & Hunt, W. A. (1996). Filling of Pipelines with Undulating Elevation Profiles. Journal of Hydraulic Engineering, 122(10), 534-539. doi:10.1061/(asce)0733-9429(1996)122:10(534) | es_ES |
dc.description.references | Malekpour, A. (2019). Complex interactions of water, air and its controlled removal during pipeline filling operations. Fluid Mechanics research International Journal, 3(1), 4-15. doi:10.15406/fmrij.2019.03.00046 | es_ES |
dc.description.references | Malekpour, A., Karney, B. W., & Nault, J. (2016). Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. Journal of Hydraulic Engineering, 142(2), 04015044. doi:10.1061/(asce)hy.1943-7900.0001067 | es_ES |
dc.description.references | Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046 | es_ES |
dc.description.references | Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353 | es_ES |
dc.description.references | Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530 | es_ES |
dc.description.references | Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695 | es_ES |
dc.description.references | SaemI, S., Raisee, M., Cervantes, M. J., & Nourbakhsh, A. (2018). Computation of two- and three-dimensional water hammer flows. Journal of Hydraulic Research, 57(3), 386-404. doi:10.1080/00221686.2018.1459892 | es_ES |
dc.description.references | Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508 | es_ES |
dc.description.references | Tran, P. D. (2017). Pressure Transients Caused by Air-Valve Closure while Filling Pipelines. Journal of Hydraulic Engineering, 143(2), 04016082. doi:10.1061/(asce)hy.1943-7900.0001245 | es_ES |
dc.description.references | Trindade, B. C., & Vasconcelos, J. G. (2013). Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions. Journal of Hydraulic Engineering, 139(9), 921-934. doi:10.1061/(asce)hy.1943-7900.0000757 | es_ES |
dc.description.references | Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984) | es_ES |
dc.description.references | Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647-656. doi:10.1080/00221686.2017.1300193 | es_ES |
dc.description.references | Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625) | es_ES |
dc.description.references | Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985 | es_ES |
dc.description.references | Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765 | es_ES |
dc.description.references | Zhou, L., Liu, D., Karney, B., & Zhang, Q. (2011). Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines. Journal of Hydraulic Engineering, 137(12), 1686-1692. doi:10.1061/(asce)hy.1943-7900.0000460 | es_ES |
dc.description.references | Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357 | es_ES |