- -

Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines

Show simple item record

Files in this item

dc.contributor.author Tiseira, Andrés-Omar es_ES
dc.contributor.author Navarro, Roberto es_ES
dc.contributor.author Inhestern, Lukas Benjamin es_ES
dc.contributor.author Hervás-Gómez, Natalia es_ES
dc.date.accessioned 2021-05-21T03:31:41Z
dc.date.available 2021-05-21T03:31:41Z
dc.date.issued 2020-06-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166580
dc.description.abstract [EN] Over the past few decades, the aerodynamic improvements of turbocharger turbines contributed significantly to the overall efficiency augmentation and the advancements in downsizing of internal combustion engines. Due to the compact size of automotive turbochargers, the experimental measurement of the complex internal aerodynamics has been insufficiently studied. Hence, turbine designs mostly rely on the results of numerical simulations and the validation of zero-dimensional parameters as efficiency and reduced mass flow. To push the aerodynamic development even further, a precise validation of three-dimensional flow patterns predicted by applied computational fluid dynamics (CFD) methods is in need. This paper presents the design of an up-scaled volute-stator model, which allows optical experimental measurement techniques. In a preliminary step, numerical results indicate that the enlarged geometry will be representative of the flow patterns and characteristic non-dimensional numbers at defined flow sections of the real size turbine. Limitations due to rotor-stator interactions are highlighted. Measurement sections of interest for available measurement techniques are predefined. es_ES
dc.description.sponsorship The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain". The support given to Ms. N.H.G. by Universitat Politecnica de Valencia through the "FPI-Subprograma 2" (No.FPI-2018-S2-1368) grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)" is gratefully acknowledged es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Turbocharging es_ES
dc.subject Turbine es_ES
dc.subject Aerodynamics es_ES
dc.subject CFD es_ES
dc.subject Volute es_ES
dc.subject Nozzled vane es_ES
dc.subject Losses es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13112930 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2018-S2-1368/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Tiseira, A.; Navarro, R.; Inhestern, LB.; Hervás-Gómez, N. (2020). Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines. Energies. 13(11):1-19. https://doi.org/10.3390/en13112930 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13112930 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\428802 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Praveena, V., & Martin, M. L. J. (2018). A review on various after treatment techniques to reduce NOx emissions in a CI engine. Journal of the Energy Institute, 91(5), 704-720. doi:10.1016/j.joei.2017.05.010 es_ES
dc.description.references Sindhu, R., Amba Prasad Rao, G., & Madhu Murthy, K. (2018). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal, 57(3), 1379-1392. doi:10.1016/j.aej.2017.06.009 es_ES
dc.description.references Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949 es_ES
dc.description.references Suhrmann, J. F., Peitsch, D., Gugau, M., & Heuer, T. (2012). On the Effect of Volute Tongue Design on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-69525 es_ES
dc.description.references Roumeas, M., & Cros, S. (2012). Aerodynamic Investigation of a Nozzle Clearance Effect on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-68835 es_ES
dc.description.references Liu, Y., Yang, C., Qi, M., Zhang, H., & Zhao, B. (2014). Shock, Leakage Flow and Wake Interactions in a Radial Turbine With Variable Guide Vanes. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25888 es_ES
dc.description.references Cornolti, L., Onorati, A., Cerri, T., Montenegro, G., & Piscaglia, F. (2013). 1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions. Applied Energy, 111, 1-15. doi:10.1016/j.apenergy.2013.04.016 es_ES
dc.description.references Bohbot, J., Chryssakis, C., & Miche, M. (2006). Simulation of a 4-Cylinder Turbocharged Gasoline Direct Injection Engine Using a Direct Temporal Coupling Between a 1D Simulation Software and a 3D Combustion Code. SAE Technical Paper Series. doi:10.4271/2006-01-3263 es_ES
dc.description.references Inhestern, L. B. (s. f.). Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions. doi:10.4995/thesis/10251/119989 es_ES
dc.description.references Tamaki, H., & Unno, M. (2008). Study on Flow Fields in Variable Area Nozzles for Radial Turbines. International Journal of Fluid Machinery and Systems, 1(1), 47-56. doi:10.5293/ijfms.2008.1.1.047 es_ES
dc.description.references Eroglu, H., & Tabakoff, W. (1991). LDV Measurements and Investigation of Flow Field Through Radial Turbine Guide Vanes. Journal of Fluids Engineering, 113(4), 660-667. doi:10.1115/1.2926531 es_ES
dc.description.references Karamanis, N., Martinez-Botas, R. F., & Su, C. C. (2000). Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery. doi:10.1115/2000-gt-0470 es_ES
dc.description.references Galindo, J., Tiseira Izaguirre, A. O., García-Cuevas, L. M., & Hervás Gómez, N. (2020). Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine. International Journal of Engine Research, 22(6), 2010-2020. doi:10.1177/1468087420916281 es_ES
dc.description.references Dufour, G., Carbonneau, X., Cazalbou, J.-B., & Chassaing, P. (2006). Practical Use of Similarity and Scaling Laws for Centrifugal Compressor Design. Volume 6: Turbomachinery, Parts A and B. doi:10.1115/gt2006-91227 es_ES
dc.description.references Tancrez, M., Galindo, J., Guardiola, C., Fajardo, P., & Varnier, O. (2011). Turbine adapted maps for turbocharger engine matching. Experimental Thermal and Fluid Science, 35(1), 146-153. doi:10.1016/j.expthermflusci.2010.07.018 es_ES
dc.description.references Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149 es_ES
dc.description.references Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006 es_ES
dc.description.references Smirnov, P. E., Hansen, T., & Menter, F. R. (2007). Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps. Volume 6: Turbo Expo 2007, Parts A and B. doi:10.1115/gt2007-27376 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130 es_ES
dc.description.references Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118 es_ES
dc.description.references Serrano, J. R., Gil, A., Navarro, R., & Inhestern, L. B. (2017). Extremely Low Mass Flow at High Blade to Jet Speed Ratio in Variable Geometry Radial Turbines and its Influence on the Flow Pattern: A CFD Analysis. Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. doi:10.1115/gt2017-63368 es_ES
dc.description.references Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2019). Contribution to tip leakage loss modeling in radial turbines based on 3D flow analysis and 1D characterization. International Journal of Heat and Fluid Flow, 78, 108423. doi:10.1016/j.ijheatfluidflow.2019.108423 es_ES
dc.description.references Choi, M., Baek, J. H., Chung, H. T., Oh, S. H., & Ko, H. Y. (2008). Effects of the low Reynolds number on the loss characteristics in an axial compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(2), 209-218. doi:10.1243/09576509jpe520 es_ES
dc.description.references Klausner, E., & Gampe, U. (2014). Evaluation and Enhancement of a One-Dimensional Performance Analysis Method for Centrifugal Compressors. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25141 es_ES
dc.description.references Tiainen, J., Jaatinen-Värri, A., Grönman, A., Turunen-Saaresti, T., & Backman, J. (2018). Effect of FreeStream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors. Journal of Turbomachinery, 140(5). doi:10.1115/1.4038872 es_ES
dc.description.references Vinuesa, R., Hosseini, S. M., Hanifi, A., Henningson, D. S., & Schlatter, P. (2017). Pressure-Gradient Turbulent Boundary Layers Developing Around a Wing Section. Flow, Turbulence and Combustion, 99(3-4), 613-641. doi:10.1007/s10494-017-9840-z es_ES


This item appears in the following Collection(s)

Show simple item record